Local Bayesian Optimization For Analog Circuit Sizing

This paper proposes a Bayesian Optimization (BO) algorithm to handle large-scale analog circuit sizing. The proposed approach uses a number of separate Gaussian Process (GP) models approximating the objective and constraint functions locally in the search space. Unlike mainstream BO approaches, it i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2021 58th ACM/IEEE Design Automation Conference (DAC) s. 1237 - 1242
Hlavní autoři: Touloupas, Konstantinos, Chouridis, Nikos, Sotiriadis, Paul P.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 05.12.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper proposes a Bayesian Optimization (BO) algorithm to handle large-scale analog circuit sizing. The proposed approach uses a number of separate Gaussian Process (GP) models approximating the objective and constraint functions locally in the search space. Unlike mainstream BO approaches, it is able to traverse high dimensional problems with ease and provide multiple query points for parallel evaluation. To extend the method to large sample budgets, GP regression and sampling are enhanced by using kernel approximations and GPU acceleration. Experimental results demonstrate that the proposed method finds better solutions within given budgets of total evaluations compared to state-of-the-art approaches.
DOI:10.1109/DAC18074.2021.9586172