RL-Sizer: VLSI Gate Sizing for Timing Optimization using Deep Reinforcement Learning

Gate sizing for timing optimization is performed extensively throughout electronic design automation (EDA) flows. However, increasing design sizes and time-to-market pressure force EDA tools to maintain pseudo-linear complexity, thereby limiting the global exploration done by the underlying sizing a...

Full description

Saved in:
Bibliographic Details
Published in:2021 58th ACM/IEEE Design Automation Conference (DAC) pp. 733 - 738
Main Authors: Lu, Yi-Chen, Nath, Siddhartha, Khandelwal, Vishal, Lim, Sung Kyu
Format: Conference Proceeding
Language:English
Published: IEEE 05.12.2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Gate sizing for timing optimization is performed extensively throughout electronic design automation (EDA) flows. However, increasing design sizes and time-to-market pressure force EDA tools to maintain pseudo-linear complexity, thereby limiting the global exploration done by the underlying sizing algorithms. Furthermore, high-performance low-power designs are pushing the envelope on power, performance and area (PPA), creating a need for last mile PPA closure using more powerful algorithms. Reinforcement learning (RL) is a disruptive paradigm that achieves high-quality optimization results beyond traditional algorithms. In this paper, we formulate gate sizing as an RL process, and propose RL-Sizer, an autonomous gate sizing agent, which performs timing optimization in an unsupervised manner. In the experiments, we demonstrate that RL-Sizer can improve the native sizing algorithms of an industry-leading EDA tool, Synopsys IC-Compiler II (ICC2), on 6 commercial designs in advanced process nodes (5 - 16nm). RL-Sizer delivers significantly better total negative slack (TNS) and number of violating endpoints (NVEs) on 4 designs with negligible power overhead, while achieving parity on athe others.
AbstractList Gate sizing for timing optimization is performed extensively throughout electronic design automation (EDA) flows. However, increasing design sizes and time-to-market pressure force EDA tools to maintain pseudo-linear complexity, thereby limiting the global exploration done by the underlying sizing algorithms. Furthermore, high-performance low-power designs are pushing the envelope on power, performance and area (PPA), creating a need for last mile PPA closure using more powerful algorithms. Reinforcement learning (RL) is a disruptive paradigm that achieves high-quality optimization results beyond traditional algorithms. In this paper, we formulate gate sizing as an RL process, and propose RL-Sizer, an autonomous gate sizing agent, which performs timing optimization in an unsupervised manner. In the experiments, we demonstrate that RL-Sizer can improve the native sizing algorithms of an industry-leading EDA tool, Synopsys IC-Compiler II (ICC2), on 6 commercial designs in advanced process nodes (5 - 16nm). RL-Sizer delivers significantly better total negative slack (TNS) and number of violating endpoints (NVEs) on 4 designs with negligible power overhead, while achieving parity on athe others.
Author Nath, Siddhartha
Khandelwal, Vishal
Lim, Sung Kyu
Lu, Yi-Chen
Author_xml – sequence: 1
  givenname: Yi-Chen
  surname: Lu
  fullname: Lu, Yi-Chen
  email: yclu@gatech.edu
  organization: Georgia Institute of Technology,School of ECE,Atlanta,GA
– sequence: 2
  givenname: Siddhartha
  surname: Nath
  fullname: Nath, Siddhartha
  email: siddhartha.nath@synopsys.com
  organization: Synopsys Inc.,Mountain View,CA
– sequence: 3
  givenname: Vishal
  surname: Khandelwal
  fullname: Khandelwal, Vishal
  email: vishal.khandelwal@synopsys.com
  organization: Synopsys Inc.,Hillsboro,OR
– sequence: 4
  givenname: Sung Kyu
  surname: Lim
  fullname: Lim, Sung Kyu
  email: limsk@ece.gatech.edu
  organization: Georgia Institute of Technology,School of ECE,Atlanta,GA
BookMark eNotj9tKw0AQhldQUGueQIR9gcQ9ZE_elVZrIVBoo7dlN5mVBbMJSbywT-8WezPz8f3DwH-PrmMfAaEnSgpKiXleL1dUE1UWjDBaGKEl5foKZUZpKqUoOVMluUXZNAVHJBG6TPMO1fsqP4QTjC_4szps8cbOgJMI8Qv7fsR16M64G-YEJzuHPuKf6azWAAPeQ4jprIEO4owrsGNM2QO68fZ7guyyF-jj7bVevefVbrNdLavcMq3mvKGqbTiXmitrjDeyFMRR553VrBWGOO0cbQmDpKTT3hPrOQhogVClBPAFevz_GwDgOIyhs-Pv8dKd_wGwOFI8
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC18074.2021.9586138
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665432740
1665432748
EndPage 738
ExternalDocumentID 9586138
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a287t-c17dc336837a99f96450b1bfba82d590b8bb1d02ebfb6b8ff0af3e5ede01775e3
IEDL.DBID RIE
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766079700123&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:28:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a287t-c17dc336837a99f96450b1bfba82d590b8bb1d02ebfb6b8ff0af3e5ede01775e3
PageCount 6
ParticipantIDs ieee_primary_9586138
PublicationCentury 2000
PublicationDate 2021-Dec.-5
PublicationDateYYYYMMDD 2021-12-05
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-5
  day: 05
PublicationDecade 2020
PublicationTitle 2021 58th ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584060
Score 2.3361406
Snippet Gate sizing for timing optimization is performed extensively throughout electronic design automation (EDA) flows. However, increasing design sizes and...
SourceID ieee
SourceType Publisher
StartPage 733
SubjectTerms Design automation
Force
Limiting
Logic gates
Reinforcement learning
Very large scale integration
Title RL-Sizer: VLSI Gate Sizing for Timing Optimization using Deep Reinforcement Learning
URI https://ieeexplore.ieee.org/document/9586138
WOSCitedRecordID wos000766079700123&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG2AePCkBozf6cGjC9vdbbf1ZkCjCUECaLiRtjslHASC4MFf77SsGBMvXjbNpN1Nprv7ZqbzZgi5FtJY6ayIFDAdoUltIyMV4CWVDjQIJgNRuJv3enI8Vv0KudlxYQAgJJ9B0w_DWX6xsBsfKmspLhF9ZJVU81xsuVrf744_3UNsikuSDotVq3PXZr7UCzqBCWuWa381UQkY8nDwv6cfksYPGY_2dzBzRCowr5PRoBsNZ5-wuqWv3eET9UEwigKcQdEMpSPfrGtKn_GH8FYyLalPcZ_SDsCSDiAUTLUhNkjLGqvTBnl5uB-1H6OyQUKk0dFZR5blhU1TgU6mVsopkfHYMOOMlknBVWykMayIE0CRMNK5WLsUOBSA32HOIT0mtfliDieEmgJtu5xnJtNJliNgaW4LZZ3SeE8m-Cmpe41MltsaGJNSGWd_i8_Jvld6SPvgF6S2Xm3gkuzZj_XsfXUVNu4LK4Waog
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4QTfSkBoy_7cGjg5WtW-vNgATiRALTcCNt90o4CATBg3-9r3NiTLx4aZqXdk3abd97r-97j5DrSGgjrIk8CUx5qFIbTwsJ2ATCgoKIiZwonMS9nhiNZL9EbjZcGADIg8-g5rr5XX42N2vnKqtLLhB9xBbZdpWzCrbW99vj7vcQnfyCpsN8WW_dNZlL9oJmYIPVitm_yqjkKNLe_9_6B6T6Q8ej_Q3QHJISzCokHSTecPoBy1v6kgy71LnBKApwBEVFlKauXNeEPuEv4bXgWlIX5D6hLYAFHUCeMtXk3kFaZFmdVMlz-z5tdryiRIKn0NRZeYbFmQmCCM1MJaWVUch9zbTVSjQyLn0ttGaZ3wAURVpY6ysbAIcM8EuMOQRHpDybz-CYUJ2hdhfzUIeqEcYIWYqbTBorFT6TRfyEVNyOjBdfWTDGxWac_i2-Irud9DEZJ93ewxnZcweQB4Hwc1JeLddwQXbM-2r6trzMD_ETaxmd6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+58th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=RL-Sizer%3A+VLSI+Gate+Sizing+for+Timing+Optimization+using+Deep+Reinforcement+Learning&rft.au=Lu%2C+Yi-Chen&rft.au=Nath%2C+Siddhartha&rft.au=Khandelwal%2C+Vishal&rft.au=Lim%2C+Sung+Kyu&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=733&rft.epage=738&rft_id=info:doi/10.1109%2FDAC18074.2021.9586138&rft.externalDocID=9586138