PrefixRL: Optimization of Parallel Prefix Circuits using Deep Reinforcement Learning
In this work, we present a reinforcement learning (RL) based approach to designing parallel prefix circuits such as adders or priority encoders that are fundamental to high-performance digital design. Unlike prior methods, our approach designs solutions tabula rasa purely through learning with synth...
Gespeichert in:
| Veröffentlicht in: | 2021 58th ACM/IEEE Design Automation Conference (DAC) S. 853 - 858 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
05.12.2021
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!