CrossLight: A Cross-Layer Optimized Silicon Photonic Neural Network Accelerator
Domain-specific neural network accelerators have seen growing interest in recent years due to their improved energy efficiency and performance compared to CPUs and GPUs. In this paper, we propose a novel cross-layer optimized neural network accelerator called CrossLight that leverages silicon photon...
Uloženo v:
| Vydáno v: | 2021 58th ACM/IEEE Design Automation Conference (DAC) s. 1069 - 1074 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
05.12.2021
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Domain-specific neural network accelerators have seen growing interest in recent years due to their improved energy efficiency and performance compared to CPUs and GPUs. In this paper, we propose a novel cross-layer optimized neural network accelerator called CrossLight that leverages silicon photonics. CrossLight includes device-level engineering for resilience to process variations and thermal crosstalk, circuit-level tuning enhancements for inference latency reduction, and architecture-level optimizations to enable better resolution, energy-efficiency, and throughput. On average, CrossLight offers 9.5x lower energy-per-bit and 15.9x higher performance-per-watt than state-of-the-art photonic deep learning accelerators. |
|---|---|
| DOI: | 10.1109/DAC18074.2021.9586161 |