PETRI: Reducing Bandwidth Requirement in Smart Surveillance by Edge-Cloud Collaborative Adaptive Frame Clustering and Pipelined Bidirectional Tracking
Neural networks running on cloud servers have been widely used in smart surveillance, but they require high bandwidth to upload videos. Edge-cloud collaborative encoding based on ROI (Region-Of-Interest) can reduce bandwidth requirement, but it suffers from inaccurate ROI detection due to feedback l...
Saved in:
| Published in: | 2021 58th ACM/IEEE Design Automation Conference (DAC) pp. 421 - 426 |
|---|---|
| Main Authors: | , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
05.12.2021
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Neural networks running on cloud servers have been widely used in smart surveillance, but they require high bandwidth to upload videos. Edge-cloud collaborative encoding based on ROI (Region-Of-Interest) can reduce bandwidth requirement, but it suffers from inaccurate ROI detection due to feedback latency and undetected new targets. To address the above challenges, we propose an object detection system named PETRI. It adopts a latency-hiding pipeline workflow with adaptive keyframe interval selection for different input videos, and utilizes a retro-tracking method to find undetected targets. While achieving negligible impact on model accuracy, the proposed PETRI can save up to 66.44% and 30.25% bandwidth compared with the cloud only method and the previous state-of-art work respectively. |
|---|---|
| AbstractList | Neural networks running on cloud servers have been widely used in smart surveillance, but they require high bandwidth to upload videos. Edge-cloud collaborative encoding based on ROI (Region-Of-Interest) can reduce bandwidth requirement, but it suffers from inaccurate ROI detection due to feedback latency and undetected new targets. To address the above challenges, we propose an object detection system named PETRI. It adopts a latency-hiding pipeline workflow with adaptive keyframe interval selection for different input videos, and utilizes a retro-tracking method to find undetected targets. While achieving negligible impact on model accuracy, the proposed PETRI can save up to 66.44% and 30.25% bandwidth compared with the cloud only method and the previous state-of-art work respectively. |
| Author | Wang, Jingyu Yang, Huazhong Zhang, Lu Liu, Yongpan Liu, Ruoyang |
| Author_xml | – sequence: 1 givenname: Ruoyang surname: Liu fullname: Liu, Ruoyang email: ypliu@tsinghua.edu.cn organization: Tsinghua University,Department of Electronic Engineering,Beijing,China – sequence: 2 givenname: Lu surname: Zhang fullname: Zhang, Lu organization: Tsinghua University,Department of Electronic Engineering,Beijing,China – sequence: 3 givenname: Jingyu surname: Wang fullname: Wang, Jingyu organization: Tsinghua University,Department of Electronic Engineering,Beijing,China – sequence: 4 givenname: Huazhong surname: Yang fullname: Yang, Huazhong organization: Tsinghua University,Department of Electronic Engineering,Beijing,China – sequence: 5 givenname: Yongpan surname: Liu fullname: Liu, Yongpan organization: Tsinghua University,Department of Electronic Engineering,Beijing,China |
| BookMark | eNotkF1OwzAQhI0EElB6AoTkC6SsYyexeWtDC5UqUbXluXLsTbFIneIkRb0I5yX8vOysRqP9tHNNzn3tkZA7BiPGQN0_jnMmIROjGGI2UolMQcozMlSZZGmaCB5nAi7JsGlcASkkUvTzinwtp5vV_IGu0HbG-R2daG8_nW3feuujcwH36FvqPF3vdWjpugtHdFWlvUFanOjU7jDKq7qzNK97u6iDbt0R6djqw-8yC3qPNK-6psXwQ-gBdOkOWDmPlk6c7SGmdbXXFd0Ebd770A25KHXV4PBfB-R1Nt3kz9Hi5WmejxeRjmXWRjK2KQfDU5OpLIXYlLqUnCWqECoDIW0pk8JwgVYlDEAhSjDABdcysZoBH5Dbv7sOEbeH4PonT9v_9vg3azhphQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/DAC18074.2021.9586088 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665432740 1665432748 |
| EndPage | 426 |
| ExternalDocumentID | 9586088 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH ACM ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO |
| ID | FETCH-LOGICAL-a287t-82d630c36c797602cfaf83159b497048df85bc34ed951009ee80c0343a85da103 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766079700071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:28:29 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a287t-82d630c36c797602cfaf83159b497048df85bc34ed951009ee80c0343a85da103 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9586088 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Dec.-5 |
| PublicationDateYYYYMMDD | 2021-12-05 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-Dec.-5 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 58th ACM/IEEE Design Automation Conference (DAC) |
| PublicationTitleAbbrev | DAC |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib060584060 |
| Score | 2.232925 |
| Snippet | Neural networks running on cloud servers have been widely used in smart surveillance, but they require high bandwidth to upload videos. Edge-cloud... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 421 |
| SubjectTerms | Bandwidth Collaboration collaborative architecture edge computing Image edge detection Object detection Pipelines Surveillance Target tracking |
| Title | PETRI: Reducing Bandwidth Requirement in Smart Surveillance by Edge-Cloud Collaborative Adaptive Frame Clustering and Pipelined Bidirectional Tracking |
| URI | https://ieeexplore.ieee.org/document/9586088 |
| WOSCitedRecordID | wos000766079700071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fS8MwEA_b8MEnFSf-Jw8-2i1d2qb1basbCjLKNmFvI01uWpjdmO3EL-LnNdfWDcEX38LR9CB34S5397sj5MZnOlBzqS2PgbQcrh0EK9uWtM3nto49UTZxfRLDoT-dBlGN3G6xMABQFJ9BC5dFLl8vVY6hsnbg-p65FXVSF0KUWK0f3cHsnrFNrALp2Cxo33dDG1u9mEdgx25Ve38NUSlsyODgf9wPSXMHxqPR1swckRqkx-Qr6k9Gj3d0hJ1XDZn2ZKo_Ep29GhIW9xZRP5qkdPxmlIOO8_UGcMAQ_i3-pH39Ala4WOaahjtN2ADtarkqFgOs2qLhIsdOCsjBMKBRskL8OmjaS0pjWEQSqbF4CmPuTfI86E_CB6sasWBJ81TKjFy0x5ninhLGL2EdI7a5z42LEzuBMJdbz303VtwBjZ4YCwB8phh3uPRdLW3GT0gjXaZwSmjgSI9Jl7syUA6TWnIhwI_BVZgKdPkZOcYzna3KLhqz6jjP_yZfkH0UW1E44l6SRrbO4YrsqU2WvK-vC9F_A9eAsc4 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gIMEJ0IZ4kwNHCumS9MENyqYhxlSNIXGb0sSDSqObxjrEH-H3EndlExIXbpHV1FLsyI7tzybkLGAm1ANlHI-BcgQ3AsHKrqNc-7lrEs-fN3Ft-51O8PwcxivkfIGFAYCi-AwucFnk8s1I5xgquwxl4NlbsUrWpBB1d47W-tEezO9Z68RKmI7Lwsvb68jFZi_2GVh3L8rdv8aoFFakufU__tuktoTj0XhhaHbICmRV8hU3et27K9rF3quWTG9UZj5SM321JCzvLeJ-NM3o45tVD_qYT2aAI4bwb8knbZgXcKLhKDc0WurCDOi1UeNi0cS6LRoNc-ylgBwsAxqnY0Swg6E36dwcFrFEam2exqh7jTw1G72o5ZRDFhxlH0tTKxnjcaa5p33rmbC6Fdwg4NbJSUTo2-ttBoFMNBdg0BdjIUDANOOCq0Aa5TK-SyrZKIM9QkOhPKYklyrUgimjuO9DkIDUmAyUfJ9U8Uz743kfjX55nAd_k0_JRqv30O637zr3h2QTRViUkcgjUplOcjgm63o2Td8nJ4UafANA77UV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+58th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=PETRI%3A+Reducing+Bandwidth+Requirement+in+Smart+Surveillance+by+Edge-Cloud+Collaborative+Adaptive+Frame+Clustering+and+Pipelined+Bidirectional+Tracking&rft.au=Liu%2C+Ruoyang&rft.au=Zhang%2C+Lu&rft.au=Wang%2C+Jingyu&rft.au=Yang%2C+Huazhong&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=421&rft.epage=426&rft_id=info:doi/10.1109%2FDAC18074.2021.9586088&rft.externalDocID=9586088 |