CompilerGym: Robust, Performant Compiler Optimization Environments for AI Research
Interest in applying Artificial Intelligence (AI) techniques to compiler optimizations is increasing rapidly, but compiler research has a high entry barrier. Unlike in other domains, compiler and AI researchers do not have access to the datasets and frameworks that enable fast iteration and developm...
Uložené v:
| Vydané v: | 2022 IEEE/ACM International Symposium on Code Generation and Optimization (CGO) s. 92 - 105 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
02.04.2022
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Interest in applying Artificial Intelligence (AI) techniques to compiler optimizations is increasing rapidly, but compiler research has a high entry barrier. Unlike in other domains, compiler and AI researchers do not have access to the datasets and frameworks that enable fast iteration and development of ideas, and getting started requires a significant engineering investment. What is needed is an easy, reusable experimental infrastructure for real world compiler optimization tasks that can serve as a common benchmark for comparing techniques, and as a platform to accelerate progress in the field.We introduce CompilerGym, a set of environments for real world compiler optimization tasks, and a toolkit for exposing new optimization tasks to compiler researchers. CompilerGym enables anyone to experiment on production compiler optimization problems through an easy-to-use package, regardless of their experience with compilers. We build upon the popular OpenAI Gym interface enabling researchers to interact with compilers using Python and a familiar API.We describe the CompilerGym architecture and implementation, characterize the optimization spaces and computational efficiencies of three included compiler environments, and provide extensive empirical evaluations. Compared to prior works, CompilerGym offers larger datasets and optimization spaces, is 27× more computationally efficient, is fault-tolerant, and capable of detecting reproducibility bugs in the underlying compilers.In making it easy for anyone to experiment with compilers - irrespective of their background - we aim to accelerate progress in the AI and compiler research domains. |
|---|---|
| AbstractList | Interest in applying Artificial Intelligence (AI) techniques to compiler optimizations is increasing rapidly, but compiler research has a high entry barrier. Unlike in other domains, compiler and AI researchers do not have access to the datasets and frameworks that enable fast iteration and development of ideas, and getting started requires a significant engineering investment. What is needed is an easy, reusable experimental infrastructure for real world compiler optimization tasks that can serve as a common benchmark for comparing techniques, and as a platform to accelerate progress in the field.We introduce CompilerGym, a set of environments for real world compiler optimization tasks, and a toolkit for exposing new optimization tasks to compiler researchers. CompilerGym enables anyone to experiment on production compiler optimization problems through an easy-to-use package, regardless of their experience with compilers. We build upon the popular OpenAI Gym interface enabling researchers to interact with compilers using Python and a familiar API.We describe the CompilerGym architecture and implementation, characterize the optimization spaces and computational efficiencies of three included compiler environments, and provide extensive empirical evaluations. Compared to prior works, CompilerGym offers larger datasets and optimization spaces, is 27× more computationally efficient, is fault-tolerant, and capable of detecting reproducibility bugs in the underlying compilers.In making it easy for anyone to experiment with compilers - irrespective of their background - we aim to accelerate progress in the AI and compiler research domains. |
| Author | Ansel, Jason Cui, Brandon Teytaud, Olivier Wasti, Bram Tian, Yuandong Cummins, Chris Guo, Jiadong Gomez, Sahir Leather, Hugh Jain, Somya Liu, Jia Steiner, Benoit |
| Author_xml | – sequence: 1 givenname: Chris surname: Cummins fullname: Cummins, Chris email: cummins@fb.com organization: Meta,USA – sequence: 2 givenname: Bram surname: Wasti fullname: Wasti, Bram organization: Meta,USA – sequence: 3 givenname: Jiadong surname: Guo fullname: Guo, Jiadong organization: Meta,USA – sequence: 4 givenname: Brandon surname: Cui fullname: Cui, Brandon organization: Meta,USA – sequence: 5 givenname: Jason surname: Ansel fullname: Ansel, Jason organization: Meta,USA – sequence: 6 givenname: Sahir surname: Gomez fullname: Gomez, Sahir organization: Meta,USA – sequence: 7 givenname: Somya surname: Jain fullname: Jain, Somya organization: Meta,USA – sequence: 8 givenname: Jia surname: Liu fullname: Liu, Jia organization: Meta,USA – sequence: 9 givenname: Olivier surname: Teytaud fullname: Teytaud, Olivier organization: Meta,USA – sequence: 10 givenname: Benoit surname: Steiner fullname: Steiner, Benoit organization: Meta,USA – sequence: 11 givenname: Yuandong surname: Tian fullname: Tian, Yuandong organization: Meta,USA – sequence: 12 givenname: Hugh surname: Leather fullname: Leather, Hugh organization: Meta,USA |
| BookMark | eNo1j99KwzAchSMo6OaeQIQ8gK35n1-8G2Wrg0Gl6PVI2xQDa1rSKMynd-C8OnC-wwdnga7DGBxCj5TklBLzXJSV5IawnBHGcqMFZRKu0IIqJQWRIOAWrebZN0SA4loTeofqYhwmf3SxPA0vuB6brzk94TcX-zEONiT8z3E1JT_4H5v8GPAmfPs4hsGFNOPzFK93uHazs7H9vEc3vT3ObnXJJfrYbt6L12xflbtivc8sA50ypU2neCtaZrmDhnZagISGGApWMWqb9lxq3gATPVOy06BI1zpDJbTQGcKX6OHP651zhyn6wcbT4XKb_wLzwVCM |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CGO53902.2022.9741258 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1665405848 9781665405843 |
| EndPage | 105 |
| ExternalDocumentID | 9741258 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK GUFHI LHSKQ RIE RIL |
| ID | FETCH-LOGICAL-a287t-679d63c4c2a3e8b1d74858b0918a621abc8b173b824f265d7860dce9158c8d903 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000827636600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:35:35 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a287t-679d63c4c2a3e8b1d74858b0918a621abc8b173b824f265d7860dce9158c8d903 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_9741258 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-April-2 |
| PublicationDateYYYYMMDD | 2022-04-02 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-April-2 day: 02 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 IEEE/ACM International Symposium on Code Generation and Optimization (CGO) |
| PublicationTitleAbbrev | CGO |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib048637701 |
| Score | 2.4636374 |
| Snippet | Interest in applying Artificial Intelligence (AI) techniques to compiler optimizations is increasing rapidly, but compiler research has a high entry barrier.... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 92 |
| SubjectTerms | Artificial intelligence Computational efficiency Computer bugs Fault tolerance Fault tolerant systems Production Reproducibility of results |
| Title | CompilerGym: Robust, Performant Compiler Optimization Environments for AI Research |
| URI | https://ieeexplore.ieee.org/document/9741258 |
| WOSCitedRecordID | wos000827636600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LSwMxEIBDWzx4UmnFNzl4bNpsdvPyJqVWQdpSFHoreUzBQ1tpt4L_3mS7WxW8eAt5EJg8JpOZL0Ho1ijlrZxLYsIGSTJjgVgOlnAw1HMRfb0FKPwsh0M1nepxDbX3LAwAFMFn0InJwpfvV24br8q64ewb9LGqo7qUcsdqVXMnUyKVkiYlpJNQ3e0NRjxY9JG2YqxTtv31iUqhQx6O_tf7MWp9w3h4vFczJ6gGyyaaxHUcFvR68Lm4w5OV3W7yNh5XFECOq3I8CnvCooQtcf8H1oZDVXz_hKvYuxZ6fei_9B5J-T0CMcHMyYmQ2ovUZY6ZFJRNvMwUVzYcAJQRLDHWhUyZWsWyORPcSyWod6ATrpzymqanqLFcLeEMYcGonYMSxsqg0ZnRwINtBppqT70Q2TlqRnnM3ncvYMxKUVz8nX2JDqPIi_gWdoUa-XoL1-jAfeRvm_VNMWxf-geZXQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LTwIxEIAniCZ6UgPGtz14ZKHb7dObMbwiAiGYcCPttiQeAAOLif_e7rKLmnjx1vSRJtPHdDrztQD3WkprxEwE2m-QAdXGBYY5EzCnsWU89fVmoHBP9PtyMlHDEtR2LIxzLgs-c_U0mfny7TLepFdlDX_29fpY7sE-o5SEW1qrmD1U8kgIHOaYTohV46k9YN6mT3krQup561_fqGRapHX8v_5PoPqN46HhTtGcQsktKjBKV7Jf0qv25_wBjZZms05qaFhwAAkqytHA7wrzHLdEzR9gG_JV0WMXFdF3VXhtNcdPnSD_ICHQ3tBJAi6U5VFMY6IjJ01oBZVMGn8EkJqTUJvYZ4rISEJnhDMrJMc2dipkMpZW4egMyovlwp0D4gSbmZNcG-F1OtHKMW-dOYWVxZZzegGVVB7T9-0bGNNcFJd_Z9_BYWf80pv2uv3nKzhKxZ9Fu5BrKCerjbuBg_gjeVuvbrMh_AIly5yk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE%2FACM+International+Symposium+on+Code+Generation+and+Optimization+%28CGO%29&rft.atitle=CompilerGym%3A+Robust%2C+Performant+Compiler+Optimization+Environments+for+AI+Research&rft.au=Cummins%2C+Chris&rft.au=Wasti%2C+Bram&rft.au=Guo%2C+Jiadong&rft.au=Cui%2C+Brandon&rft.date=2022-04-02&rft.pub=IEEE&rft.spage=92&rft.epage=105&rft_id=info:doi/10.1109%2FCGO53902.2022.9741258&rft.externalDocID=9741258 |