LENS: Layer Distribution Enabled Neural Architecture Search in Edge-Cloud Hierarchies

Edge-Cloud hierarchical systems employing intelligence through Deep Neural Networks (DNNs) endure the dilemma of workload distribution within them. Previous solutions proposed to distribute workloads at runtime according to the state of the surroundings, like the wireless conditions. However, such c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2021 58th ACM/IEEE Design Automation Conference (DAC) S. 403 - 408
Hauptverfasser: Odema, Mohanad, Rashid, Nafiul, Demirel, Berken Utku, Faruque, Mohammad Abdullah Al
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 05.12.2021
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Edge-Cloud hierarchical systems employing intelligence through Deep Neural Networks (DNNs) endure the dilemma of workload distribution within them. Previous solutions proposed to distribute workloads at runtime according to the state of the surroundings, like the wireless conditions. However, such conditions are usually overlooked at design time. This paper addresses this issue for DNN architectural design by presenting a novel methodology, LENS, which administers multi-objective Neural Architecture Search (NAS) for two-tiered systems, where the performance objectives are refashioned to consider the wireless communication parameters. From our experimental search space, we demonstrate that LENS improves upon the traditional solution's Pareto set by 76.47% and 75% with respect to the energy and latency metrics, respectively.
AbstractList Edge-Cloud hierarchical systems employing intelligence through Deep Neural Networks (DNNs) endure the dilemma of workload distribution within them. Previous solutions proposed to distribute workloads at runtime according to the state of the surroundings, like the wireless conditions. However, such conditions are usually overlooked at design time. This paper addresses this issue for DNN architectural design by presenting a novel methodology, LENS, which administers multi-objective Neural Architecture Search (NAS) for two-tiered systems, where the performance objectives are refashioned to consider the wireless communication parameters. From our experimental search space, we demonstrate that LENS improves upon the traditional solution's Pareto set by 76.47% and 75% with respect to the energy and latency metrics, respectively.
Author Faruque, Mohammad Abdullah Al
Demirel, Berken Utku
Rashid, Nafiul
Odema, Mohanad
Author_xml – sequence: 1
  givenname: Mohanad
  surname: Odema
  fullname: Odema, Mohanad
  email: modema@uci.edu
  organization: University of California,Department of Electrical Engineering and Computer Science,Irvine,California,USA
– sequence: 2
  givenname: Nafiul
  surname: Rashid
  fullname: Rashid, Nafiul
  email: nafiulr@uci.edu
  organization: University of California,Department of Electrical Engineering and Computer Science,Irvine,California,USA
– sequence: 3
  givenname: Berken Utku
  surname: Demirel
  fullname: Demirel, Berken Utku
  email: bdemirel@uci.edu
  organization: University of California,Department of Electrical Engineering and Computer Science,Irvine,California,USA
– sequence: 4
  givenname: Mohammad Abdullah Al
  surname: Faruque
  fullname: Faruque, Mohammad Abdullah Al
  email: alfaruqu@uci.edu
  organization: University of California,Department of Electrical Engineering and Computer Science,Irvine,California,USA
BookMark eNotj89Kw0AYxFdQUGueQIR9gdRv_2bjLaSpFUI91J7LbvaLLsRENsmhb2_EXmaYH8PA3JPrfuiRkCcGa8Ygf94UJTOQyTUHzta5Mpqr_IokeWaY1koKnkm4Jck4BgcalJGL3pFjXe0PL7S2Z4x0E8YpBjdPYehp1VvXoad7nKPtaBGbrzBhM80R6QHtEmlYWv4T07IbZk93AeMfDjg-kJvWdiMmF1-R47b6KHdp_f76VhZ1arnJplR5bcA0HizzonXCei8MR4XKcuE0Stb43EpwUmYeAZx2rfCOt6zhHLERK_L4vxsQ8fQTw7eN59PlvPgFNh1Syw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC18074.2021.9586259
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665432740
1665432748
EndPage 408
ExternalDocumentID 9586259
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a287t-5d6808cd0a1d3fb3add382e5e5a23b6e41cd9a40b447de00b6bf3db2f1c22eec3
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766079700068&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:28:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a287t-5d6808cd0a1d3fb3add382e5e5a23b6e41cd9a40b447de00b6bf3db2f1c22eec3
PageCount 6
ParticipantIDs ieee_primary_9586259
PublicationCentury 2000
PublicationDate 2021-Dec.-5
PublicationDateYYYYMMDD 2021-12-05
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-5
  day: 05
PublicationDecade 2020
PublicationTitle 2021 58th ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584060
Score 2.272826
Snippet Edge-Cloud hierarchical systems employing intelligence through Deep Neural Networks (DNNs) endure the dilemma of workload distribution within them. Previous...
SourceID ieee
SourceType Publisher
StartPage 403
SubjectTerms Deep learning
Design automation
Design methodology
Hierarchical systems
Runtime
Search problems
Wireless communication
Title LENS: Layer Distribution Enabled Neural Architecture Search in Edge-Cloud Hierarchies
URI https://ieeexplore.ieee.org/document/9586259
WOSCitedRecordID wos000766079700068&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB5UeuipLVr6Joceu7pJNpvd3sQHHkSEVvAmecwWQbTo2t_fJG5tC730FkJCYBLmkZnvG4DHlDEX40gVaaU8qbbz4TKnKiMhDHMOio2VCEDhsZxMsvk8n9bg6YiFQcRQfIZtPwy5fLsxe_9V1slF5t31OtSllAes1tfb8dk9Z5viCqRD47zT7_aop3pxQSCj7WrvryYqwYYMz_53-jm0vsF4ZHo0MxdQw3UTZuPB5OWZjJXzmEnfk99WfavIIIChLPGsG2pFuj8SBeRQW0yWbpV9w6i32uwtGS09Btmtwl0LZsPBa28UVR0SIuUinTIS1nfOME6i1PJCc6eseMZQoFCM6xQTamyuklgnibQYxzrVBbeaFdQwhmj4JTTWmzVeAeEGY5NqmqJ0Fp8qrWiCCWLBFTVUsWtoepEs3g8kGItKGjd_T9_CqZd6qPsQd9Aot3u8hxPzUS5324dwc5808ZqC
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA61CnpSacXdHDw67WSbxVvpQsVxKNhCbyXLGymUVrr4-03SsSp48RZCQuAlvCXvfd9D6D6i1MY4sQyUlI5U2_pwiVWVgRCaWgfFhFJ4oHAW53kyHqeDCnrYYWEAwBefQcMNfS7fLPTGfZU1U5E4d30P7QvOKdmitb5ej8vvWesUljAdEqbNTqtNHNmLDQMpaZS7f7VR8Vakd_y_809Q_RuOhwc7Q3OKKjCvoVHWzV8fcSatz4w7jv627FyFux4OZbDj3ZAz3PqRKsDb6mI8tavMGwTt2WJjcH_qUMh2FazqaNTrDtv9oOyREEgb66wDYVzvDG1lSgwrFLPqiiUUBAhJmYqAE21SyUPFeWwgDFWkCmYULYimFECzM1SdL-ZwjjDTEOpIkQhia_OJVJJw4AAFk0QTSS9QzYlk8r6lwZiU0rj8e_oOHfaHL9kke8qfr9CRuwFfBSKuUXW93MANOtAf6-lqeetv8RNsuZ3J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+58th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=LENS%3A+Layer+Distribution+Enabled+Neural+Architecture+Search+in+Edge-Cloud+Hierarchies&rft.au=Odema%2C+Mohanad&rft.au=Rashid%2C+Nafiul&rft.au=Demirel%2C+Berken+Utku&rft.au=Faruque%2C+Mohammad+Abdullah+Al&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=403&rft.epage=408&rft_id=info:doi/10.1109%2FDAC18074.2021.9586259&rft.externalDocID=9586259