LENS: Layer Distribution Enabled Neural Architecture Search in Edge-Cloud Hierarchies
Edge-Cloud hierarchical systems employing intelligence through Deep Neural Networks (DNNs) endure the dilemma of workload distribution within them. Previous solutions proposed to distribute workloads at runtime according to the state of the surroundings, like the wireless conditions. However, such c...
Saved in:
| Published in: | 2021 58th ACM/IEEE Design Automation Conference (DAC) pp. 403 - 408 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
05.12.2021
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Edge-Cloud hierarchical systems employing intelligence through Deep Neural Networks (DNNs) endure the dilemma of workload distribution within them. Previous solutions proposed to distribute workloads at runtime according to the state of the surroundings, like the wireless conditions. However, such conditions are usually overlooked at design time. This paper addresses this issue for DNN architectural design by presenting a novel methodology, LENS, which administers multi-objective Neural Architecture Search (NAS) for two-tiered systems, where the performance objectives are refashioned to consider the wireless communication parameters. From our experimental search space, we demonstrate that LENS improves upon the traditional solution's Pareto set by 76.47% and 75% with respect to the energy and latency metrics, respectively. |
|---|---|
| AbstractList | Edge-Cloud hierarchical systems employing intelligence through Deep Neural Networks (DNNs) endure the dilemma of workload distribution within them. Previous solutions proposed to distribute workloads at runtime according to the state of the surroundings, like the wireless conditions. However, such conditions are usually overlooked at design time. This paper addresses this issue for DNN architectural design by presenting a novel methodology, LENS, which administers multi-objective Neural Architecture Search (NAS) for two-tiered systems, where the performance objectives are refashioned to consider the wireless communication parameters. From our experimental search space, we demonstrate that LENS improves upon the traditional solution's Pareto set by 76.47% and 75% with respect to the energy and latency metrics, respectively. |
| Author | Faruque, Mohammad Abdullah Al Demirel, Berken Utku Rashid, Nafiul Odema, Mohanad |
| Author_xml | – sequence: 1 givenname: Mohanad surname: Odema fullname: Odema, Mohanad email: modema@uci.edu organization: University of California,Department of Electrical Engineering and Computer Science,Irvine,California,USA – sequence: 2 givenname: Nafiul surname: Rashid fullname: Rashid, Nafiul email: nafiulr@uci.edu organization: University of California,Department of Electrical Engineering and Computer Science,Irvine,California,USA – sequence: 3 givenname: Berken Utku surname: Demirel fullname: Demirel, Berken Utku email: bdemirel@uci.edu organization: University of California,Department of Electrical Engineering and Computer Science,Irvine,California,USA – sequence: 4 givenname: Mohammad Abdullah Al surname: Faruque fullname: Faruque, Mohammad Abdullah Al email: alfaruqu@uci.edu organization: University of California,Department of Electrical Engineering and Computer Science,Irvine,California,USA |
| BookMark | eNotj89Kw0AYxFdQUGueQIR9gdRv_2bjLaSpFUI91J7LbvaLLsRENsmhb2_EXmaYH8PA3JPrfuiRkCcGa8Ygf94UJTOQyTUHzta5Mpqr_IokeWaY1koKnkm4Jck4BgcalJGL3pFjXe0PL7S2Z4x0E8YpBjdPYehp1VvXoad7nKPtaBGbrzBhM80R6QHtEmlYWv4T07IbZk93AeMfDjg-kJvWdiMmF1-R47b6KHdp_f76VhZ1arnJplR5bcA0HizzonXCei8MR4XKcuE0Stb43EpwUmYeAZx2rfCOt6zhHLERK_L4vxsQ8fQTw7eN59PlvPgFNh1Syw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/DAC18074.2021.9586259 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665432740 1665432748 |
| EndPage | 408 |
| ExternalDocumentID | 9586259 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH ACM ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO |
| ID | FETCH-LOGICAL-a287t-5d6808cd0a1d3fb3add382e5e5a23b6e41cd9a40b447de00b6bf3db2f1c22eec3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766079700068&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:28:29 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a287t-5d6808cd0a1d3fb3add382e5e5a23b6e41cd9a40b447de00b6bf3db2f1c22eec3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9586259 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Dec.-5 |
| PublicationDateYYYYMMDD | 2021-12-05 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-Dec.-5 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 58th ACM/IEEE Design Automation Conference (DAC) |
| PublicationTitleAbbrev | DAC |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib060584060 |
| Score | 2.272826 |
| Snippet | Edge-Cloud hierarchical systems employing intelligence through Deep Neural Networks (DNNs) endure the dilemma of workload distribution within them. Previous... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 403 |
| SubjectTerms | Deep learning Design automation Design methodology Hierarchical systems Runtime Search problems Wireless communication |
| Title | LENS: Layer Distribution Enabled Neural Architecture Search in Edge-Cloud Hierarchies |
| URI | https://ieeexplore.ieee.org/document/9586259 |
| WOSCitedRecordID | wos000766079700068&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEA4qPfTUFi19k0OPXc1jY9zexAceRIRW8CZJZrYIokXX_v4mcWtb6KW3sCQsTJL9Znbmm4-QR537INmAD1NNkDATNk88CJsEjQGPj8pqcFFsQk8mnfk8m1bI05ELg4ix-AybYRhz-bBx-_CrrJWpTnDXq6SqtT5wtb7OTsjueWxiJUmHs6zV7_Z4aPXig0DBm-XaXyIqEUOGZ_97-zlpfJPx6PQIMxekgus6mY0Hk5dnOjbeY6b90Py21K2ig0iGAhq6bpgV7f5IFNBDbTFd-lnwhklvtdkDHS0DB9nPwl2DzIaD194oKRUSEuMjnSJREJQzHDDDQeZW-o-V7AhUqIyQto0pd5CZlNk01YCM2bbNJViRcycEopOXpLberPGKUC2Vlt79QH-hU1TWGJtC24Li1kmWi2tSDyZZvB-aYCxKa9z8_fiWnAarx7oPdUdqxXaP9-TEfRTL3fYh7twnem2bPQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61CnpSacW3OXh0282r2_VW-qDiuhRsobeSZGalUFrpw99vsl2rghdvISQEkt18M5n55iPkPsqck6zBuanaS5hxkwUOhHWAWoPDR2UisLnYRJSmzfE4HpTIw44Lg4h58hnWfDOP5cPCbvxTWT1WTW-u75F9JSVnW7bW19fj43sOncKCpsPCuN5ptZkv9uLcQM5qxexfMio5ivSO_7f-Cal-0_HoYAc0p6SE8woZJd309ZEm2tnMtOPL3xbKVbSb06GA-robekZbP0IFdJtdTKduFLxh0J4tNkD7U89CdqNwVSWjXnfY7geFRkKgna-zDhR47QwLoWYgMiPcdSWaHBUqzYVpoGQWYi1DI2UEGIamYTIBhmfMco5oxRkpzxdzPCc0EioSzgBB90tLVEZrI6FhQDFjRZjxC1LxWzJ535bBmBS7cfl39x057A9fkknylD5fkSN_AnkWiLom5fVygzfkwH6sp6vlbX6Kn71dnoQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+58th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=LENS%3A+Layer+Distribution+Enabled+Neural+Architecture+Search+in+Edge-Cloud+Hierarchies&rft.au=Odema%2C+Mohanad&rft.au=Rashid%2C+Nafiul&rft.au=Demirel%2C+Berken+Utku&rft.au=Faruque%2C+Mohammad+Abdullah+Al&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=403&rft.epage=408&rft_id=info:doi/10.1109%2FDAC18074.2021.9586259&rft.externalDocID=9586259 |