TCL: an ANN-to-SNN Conversion with Trainable Clipping Layers
Spiking-neural-networks (SNNs) are promising at edge devices since the event-driven operations of SNNs provides significantly lower power compared to analog-neural-networks (ANNs). Although it is difficult to efficiently train SNNs, many techniques to convert trained ANNs to SNNs have been developed...
Uloženo v:
| Vydáno v: | 2021 58th ACM/IEEE Design Automation Conference (DAC) s. 793 - 798 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
05.12.2021
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Spiking-neural-networks (SNNs) are promising at edge devices since the event-driven operations of SNNs provides significantly lower power compared to analog-neural-networks (ANNs). Although it is difficult to efficiently train SNNs, many techniques to convert trained ANNs to SNNs have been developed. However, after the conversion, a trade-off relation between accuracy and latency exists in SNNs, causing considerable latency in large size datasets such as ImageNet. We present a technique, named as TCL, to alleviate the trade-off problem, enabling the accuracy of 73.87% (VGG-16) and 70.37% (ResNet-34) for ImageNet with the moderate latency of 250 cycles in SNNs. |
|---|---|
| AbstractList | Spiking-neural-networks (SNNs) are promising at edge devices since the event-driven operations of SNNs provides significantly lower power compared to analog-neural-networks (ANNs). Although it is difficult to efficiently train SNNs, many techniques to convert trained ANNs to SNNs have been developed. However, after the conversion, a trade-off relation between accuracy and latency exists in SNNs, causing considerable latency in large size datasets such as ImageNet. We present a technique, named as TCL, to alleviate the trade-off problem, enabling the accuracy of 73.87% (VGG-16) and 70.37% (ResNet-34) for ImageNet with the moderate latency of 250 cycles in SNNs. |
| Author | Chang, Ik-Joon Ho, Nguyen-Dong |
| Author_xml | – sequence: 1 givenname: Nguyen-Dong surname: Ho fullname: Ho, Nguyen-Dong email: donghn@khu.ac.kr organization: Kyung Hee University – sequence: 2 givenname: Ik-Joon surname: Chang fullname: Chang, Ik-Joon email: ichang@khu.ac.kr organization: Kyung Hee University |
| BookMark | eNotj81KxDAcxCMoqGufQIS8QGvSfIuXElddKN2D9bwk7b8aqGlpi7Jvb8W9zMzhxzBzjc7jEAGhO0oySom5fyos1UTxLCc5zYzQMpfyDCVGaSql4CxXnFyiZJ6DJ5IIzVe9Qo-1LR-wi7ioqnQZ0reqwnaI3zDNYYj4JyyfuJ5ciM73gG0fxjHED1y640rcoIvO9TMkJ9-g9-dtbV_Tcv-ys0WZulyrJeVUwV9qjdGagddCuHUeePDSE-ZaYEYT0rK2aTppOspArUQrROMYlx3boNv_3gAAh3EKX246Hk4f2S-5CUg9 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/DAC18074.2021.9586266 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665432740 1665432748 |
| EndPage | 798 |
| ExternalDocumentID | 9586266 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: 10.13039/501100003725 |
| GroupedDBID | 6IE 6IH ACM ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO |
| ID | FETCH-LOGICAL-a287t-417ea287d99883eb855a862ebeb6b03ade39800d3dccf69f13e75a8d55ca346f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766079700133&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:28:29 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a287t-417ea287d99883eb855a862ebeb6b03ade39800d3dccf69f13e75a8d55ca346f3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9586266 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Dec.-5 |
| PublicationDateYYYYMMDD | 2021-12-05 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-Dec.-5 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 58th ACM/IEEE Design Automation Conference (DAC) |
| PublicationTitleAbbrev | DAC |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib060584060 |
| Score | 2.4465046 |
| Snippet | Spiking-neural-networks (SNNs) are promising at edge devices since the event-driven operations of SNNs provides significantly lower power compared to... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 793 |
| SubjectTerms | ANN-to-SNN conversion Clocks Design automation Limiting Neural networks Spiking Neural Network trainable clipping layer Training |
| Title | TCL: an ANN-to-SNN Conversion with Trainable Clipping Layers |
| URI | https://ieeexplore.ieee.org/document/9586266 |
| WOSCitedRecordID | wos000766079700133&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5t8eBJpRXf5ODRtLubzSYrXspq8VCWghV6K8kkK4JspW79_WbStSJ48RZCQp4wj2--GUKuEVriAMBM4iqWqqxCkLBiEOUgnHAqTSAUm5BlqRaLfNYhNzsujHMuBJ-5ITYDlm9XsEFX2SgXqH9nXdKVUm65Wt9_B9E9L5uilqQTR_noflzEmOrFG4FJPGzn_iqiEmTI5OB_qx-SwQ8Zj852YuaIdFzdJ3fzYnpLdU3HZcmaFXsqS1pgAHnwflH0rtL5umVG0eItpGF4oVONGvaAPE8e5sUjawshMO0NmoalsXTYst42UtwZJYT2e_H3bzITcW0dz73iZ7kFqLK8irmTfoQVAjRPs4ofk169qt0JoYmOYsjTSGkBqVBaGZDSWoRDDbcmOyV9PPnyfZvrYtke-uzv7nOyj5cbwjvEBek16427JHvw2bx-rK_CA30BZN6Qjg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MKehJZRO_zcGj2domaVPxMqpjYi0DK-w20iQVQTqpnX-_SVYnghdvISTkE97H7_3eA7i00BKRUuIi0CWmPCwtSFhi6cWSaaY5DaQrNhFlGZ_N4mkHrtZcGK21Cz7TA9t0WL5ayKV1lQ1jZvXvcAM2GaWBv2Jrff8ei-8Z6eS1NB3fi4e3o8S3yV6MGRj4g3b2rzIqToqMd_-3_h70f-h4aLoWNPvQ0VUPbvIkvUaiQqMsw80CP2UZSmwIufN_IetfRXndcqNQ8uYSMbygVFgduw_P47s8meC2FAIWxqRpMPUjbVvKWEec6IIzJsxezAsUYeERoTSJjeqniJKyDOPSJzoyIxRjUhAaluQAutWi0oeAAuH5MqYeF0xSxgUvZBQpZQHRgqgiPIKePfn8fZXtYt4e-vjv7gvYnuSP6Ty9zx5OYMdetAv2YKfQbeqlPoMt-dm8ftTn7rG-AB5Jk9U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+58th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=TCL%3A+an+ANN-to-SNN+Conversion+with+Trainable+Clipping+Layers&rft.au=Ho%2C+Nguyen-Dong&rft.au=Chang%2C+Ik-Joon&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=793&rft.epage=798&rft_id=info:doi/10.1109%2FDAC18074.2021.9586266&rft.externalDocID=9586266 |