GPU-accelerated Path-based Timing Analysis
Path-based Analysis (PBA) is an important step in the design closure flow for reducing slack pessimism. However, PBA is extremely time-consuming. Recent years have seen many parallel PBA algorithms, but most of them are architecturally constrained by the CPU parallelism and do not scale beyond a few...
Uloženo v:
| Vydáno v: | 2021 58th ACM/IEEE Design Automation Conference (DAC) s. 721 - 726 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
05.12.2021
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Path-based Analysis (PBA) is an important step in the design closure flow for reducing slack pessimism. However, PBA is extremely time-consuming. Recent years have seen many parallel PBA algorithms, but most of them are architecturally constrained by the CPU parallelism and do not scale beyond a few threads. To overcome this challenge, we propose in this paper a new fast and accurate PBA algorithm by harnessing the power of graphics processing unit (GPU). We introduce GPU-efficient data structures, high-performance kernels, and efficient CPU-GPU task decomposition strateiges, to accelerate PBA to a new performance milestone. Experimental results show that our method can speed up the state-of-the-art algorithm by 543\times on a design of 1.6 million gates with exact accuracy. At the extreme, our method of 1 CPU and 1 GPU outperforms the state-of-the-art algorithm of 40 CPUs by 25-45\times. |
|---|---|
| DOI: | 10.1109/DAC18074.2021.9586316 |