NeurFill: Migrating Full-Chip CMP Simulators to Neural Networks for Model-Based Dummy Filling Synthesis
Dummy filling is widely applied to significantly improve the planarity of topographic patterns for the chemical mechanical polishing (CMP) process in VLSI manufacturing. This paper proposes a novel model-based dummy filling synthesis framework NeurFill, integrated with multiple starting points-seque...
Uloženo v:
| Vydáno v: | 2021 58th ACM/IEEE Design Automation Conference (DAC) s. 187 - 192 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
05.12.2021
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Dummy filling is widely applied to significantly improve the planarity of topographic patterns for the chemical mechanical polishing (CMP) process in VLSI manufacturing. This paper proposes a novel model-based dummy filling synthesis framework NeurFill, integrated with multiple starting points-sequential quadratic programming (MSP-SQP) optimization solver. Inside this framework, a full-chip CMP simulator is first migrated to the neural network, achieving 8134 \times speedup on gradient calculation by backward propagation. Multi-modal starting points search is further applied in the framework to obtain satisfying filling quality optimums. The experimental results show that the proposed NeurFill outperforms existing rule- and model-based methods. |
|---|---|
| AbstractList | Dummy filling is widely applied to significantly improve the planarity of topographic patterns for the chemical mechanical polishing (CMP) process in VLSI manufacturing. This paper proposes a novel model-based dummy filling synthesis framework NeurFill, integrated with multiple starting points-sequential quadratic programming (MSP-SQP) optimization solver. Inside this framework, a full-chip CMP simulator is first migrated to the neural network, achieving 8134 \times speedup on gradient calculation by backward propagation. Multi-modal starting points search is further applied in the framework to obtain satisfying filling quality optimums. The experimental results show that the proposed NeurFill outperforms existing rule- and model-based methods. |
| Author | Yan, Changhao Zhou, Dian Ma, Yuzhe Yu, Bei Zeng, Xuan Cai, Junzhe |
| Author_xml | – sequence: 1 givenname: Junzhe surname: Cai fullname: Cai, Junzhe organization: Fudan University,State Key Lab of ASIC & System,Microelectronics Department,Shanghai,China – sequence: 2 givenname: Changhao surname: Yan fullname: Yan, Changhao email: yanch@fudan.edu.cn organization: Fudan University,State Key Lab of ASIC & System,Microelectronics Department,Shanghai,China – sequence: 3 givenname: Yuzhe surname: Ma fullname: Ma, Yuzhe organization: The Chinese University of Hong Kong,Hong Kong – sequence: 4 givenname: Bei surname: Yu fullname: Yu, Bei organization: The Chinese University of Hong Kong,Hong Kong – sequence: 5 givenname: Dian surname: Zhou fullname: Zhou, Dian organization: University of Texas at Dallas,USA – sequence: 6 givenname: Xuan surname: Zeng fullname: Zeng, Xuan email: xzeng@fudan.edu.cn organization: Fudan University,State Key Lab of ASIC & System,Microelectronics Department,Shanghai,China |
| BookMark | eNotkN9KwzAcRiMoqLNPIEJeoDPN_3g3u02FTYXp9UjbX7dg2o6kRfr2brib79x8nItziy7brgWEHjIyzTJiHuezPNNE8SklNJsaoSWj4gIlRulMSsEZVZxcoyRGVxBJhObHvUG7dxjC0nn_hNduF2zv2h1eDt6n-d4dcL7-xBvXDN72XYi47_Dpb_0R_W8XfiKuu4DXXQU-fbYRKjwfmmbEJ-PJtBnbfg_RxTt0VVsfITlzgr6Xi6_8NV19vLzls1VqqVZ9yoAKaiypBZOGg-HaQFloVXIBpiiVNZwIS0StQNeVEFqBrMqiZFZX0hLGJuj-3-sAYHsIrrFh3J5zsD_y5Fik |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/DAC18074.2021.9586325 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665432740 1665432748 |
| EndPage | 192 |
| ExternalDocumentID | 9586325 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IH ACM ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO |
| ID | FETCH-LOGICAL-a287t-3e2529a0f53694e9489ecb87c45e9bc7a9405a05f7e8fd5587e6dcbc3a8d6a033 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766079700032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:28:29 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a287t-3e2529a0f53694e9489ecb87c45e9bc7a9405a05f7e8fd5587e6dcbc3a8d6a033 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9586325 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Dec.-5 |
| PublicationDateYYYYMMDD | 2021-12-05 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-Dec.-5 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 58th ACM/IEEE Design Automation Conference (DAC) |
| PublicationTitleAbbrev | DAC |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib060584060 |
| Score | 2.1938653 |
| Snippet | Dummy filling is widely applied to significantly improve the planarity of topographic patterns for the chemical mechanical polishing (CMP) process in VLSI... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 187 |
| SubjectTerms | Backpropagation Design automation Filling Manufacturing Neural networks Semiconductor device modeling Very large scale integration |
| Title | NeurFill: Migrating Full-Chip CMP Simulators to Neural Networks for Model-Based Dummy Filling Synthesis |
| URI | https://ieeexplore.ieee.org/document/9586325 |
| WOSCitedRecordID | wos000766079700032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA_b8OBJZRO_ycGj3Zq2SRNv2jm8bAymsNvIx6sW6jrWTth_b9LVieDFU0vTJJAPfu-XvPd-CN1aSANqtLFbnChLUFTqcamYx5RSRoTcgDK12EQ8mfD5XExb6G4fCwMAtfMZ9N1rfZdvCr1xR2UDQTkLA9pG7Thmu1it77XjbvcsNvlNkA7xxWD4kBCX6sWSwID0m7q_RFRqDBkd_a_3Y9T7CcbD0z3MnKAWLLvozSXVGGV5fo_HmUv3YIuwo5Ne8p6tcDKe4ln24aS5inWJqwK7_2VuH7XXd4mtrYqdDlruPVocM3hoF-QWuxZdS7Pt0hqGZVb20Ovo6SV59hrNBE9a7lN5IQQ0ENJPachEBCLiArTisY4oCKVjKayFJn2axsBTQymPgRmtdCi5YdIPw1PUWRZLOENYi0gzxQThmkRKEUlAUW4thJSAZWnkHHXdIC1Wu7QYi2Z8Lv7-fIkO3TzUniD0CnWq9Qau0YH-rLJyfVPP5RfBaKFt |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5zCvqksol38-Cjnc3atIlvujkmbmOwCXsbuZxqobZj7YT9e5NaJ4IvPrU0TQK58J0vOed8CF0bSAOqlTZbnEhDUGTkMCEDJ5BSau4xDVKXYhPhaMRmMz6uoZtNLAwAlM5n0LKv5V2-ztTKHpXdcsoCr0230LZVzqqitb5Xj73fM-jkVmE6xOW33fsOscleDA1sk1ZV-5eMSokivf3_9X-Amj_heHi8AZpDVIO0gV5tWo1enCR3eBjbhA-mCFtC6XTe4gXuDMd4Er9bca5smeMiw_Z_kZhH6fedY2OtYquEljgPBsk07poluca2RdvSZJ0a0zCP8yZ66T1OO32nUk1whGE_heNBm7a5cCPqBdwH7jMOSrJQ-RS4VKHgxkYTLo1CYJGmlIUQaCWVJ5gOhOt5R6ieZikcI6y4rwIZcMIU8aUkgoCkzNgIEQHD08gJathBmi--EmPMq_E5_fvzFdrtT4eD-eBp9HyG9uyclH4h9BzVi-UKLtCO-ijifHlZzusnWgSktg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+58th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=NeurFill%3A+Migrating+Full-Chip+CMP+Simulators+to+Neural+Networks+for+Model-Based+Dummy+Filling+Synthesis&rft.au=Cai%2C+Junzhe&rft.au=Yan%2C+Changhao&rft.au=Ma%2C+Yuzhe&rft.au=Yu%2C+Bei&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=187&rft.epage=192&rft_id=info:doi/10.1109%2FDAC18074.2021.9586325&rft.externalDocID=9586325 |