NeurFill: Migrating Full-Chip CMP Simulators to Neural Networks for Model-Based Dummy Filling Synthesis

Dummy filling is widely applied to significantly improve the planarity of topographic patterns for the chemical mechanical polishing (CMP) process in VLSI manufacturing. This paper proposes a novel model-based dummy filling synthesis framework NeurFill, integrated with multiple starting points-seque...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2021 58th ACM/IEEE Design Automation Conference (DAC) s. 187 - 192
Hlavní autoři: Cai, Junzhe, Yan, Changhao, Ma, Yuzhe, Yu, Bei, Zhou, Dian, Zeng, Xuan
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 05.12.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Dummy filling is widely applied to significantly improve the planarity of topographic patterns for the chemical mechanical polishing (CMP) process in VLSI manufacturing. This paper proposes a novel model-based dummy filling synthesis framework NeurFill, integrated with multiple starting points-sequential quadratic programming (MSP-SQP) optimization solver. Inside this framework, a full-chip CMP simulator is first migrated to the neural network, achieving 8134 \times speedup on gradient calculation by backward propagation. Multi-modal starting points search is further applied in the framework to obtain satisfying filling quality optimums. The experimental results show that the proposed NeurFill outperforms existing rule- and model-based methods.
AbstractList Dummy filling is widely applied to significantly improve the planarity of topographic patterns for the chemical mechanical polishing (CMP) process in VLSI manufacturing. This paper proposes a novel model-based dummy filling synthesis framework NeurFill, integrated with multiple starting points-sequential quadratic programming (MSP-SQP) optimization solver. Inside this framework, a full-chip CMP simulator is first migrated to the neural network, achieving 8134 \times speedup on gradient calculation by backward propagation. Multi-modal starting points search is further applied in the framework to obtain satisfying filling quality optimums. The experimental results show that the proposed NeurFill outperforms existing rule- and model-based methods.
Author Yan, Changhao
Zhou, Dian
Ma, Yuzhe
Yu, Bei
Zeng, Xuan
Cai, Junzhe
Author_xml – sequence: 1
  givenname: Junzhe
  surname: Cai
  fullname: Cai, Junzhe
  organization: Fudan University,State Key Lab of ASIC & System,Microelectronics Department,Shanghai,China
– sequence: 2
  givenname: Changhao
  surname: Yan
  fullname: Yan, Changhao
  email: yanch@fudan.edu.cn
  organization: Fudan University,State Key Lab of ASIC & System,Microelectronics Department,Shanghai,China
– sequence: 3
  givenname: Yuzhe
  surname: Ma
  fullname: Ma, Yuzhe
  organization: The Chinese University of Hong Kong,Hong Kong
– sequence: 4
  givenname: Bei
  surname: Yu
  fullname: Yu, Bei
  organization: The Chinese University of Hong Kong,Hong Kong
– sequence: 5
  givenname: Dian
  surname: Zhou
  fullname: Zhou, Dian
  organization: University of Texas at Dallas,USA
– sequence: 6
  givenname: Xuan
  surname: Zeng
  fullname: Zeng, Xuan
  email: xzeng@fudan.edu.cn
  organization: Fudan University,State Key Lab of ASIC & System,Microelectronics Department,Shanghai,China
BookMark eNotkN9KwzAcRiMoqLNPIEJeoDPN_3g3u02FTYXp9UjbX7dg2o6kRfr2brib79x8nItziy7brgWEHjIyzTJiHuezPNNE8SklNJsaoSWj4gIlRulMSsEZVZxcoyRGVxBJhObHvUG7dxjC0nn_hNduF2zv2h1eDt6n-d4dcL7-xBvXDN72XYi47_Dpb_0R_W8XfiKuu4DXXQU-fbYRKjwfmmbEJ-PJtBnbfg_RxTt0VVsfITlzgr6Xi6_8NV19vLzls1VqqVZ9yoAKaiypBZOGg-HaQFloVXIBpiiVNZwIS0StQNeVEFqBrMqiZFZX0hLGJuj-3-sAYHsIrrFh3J5zsD_y5Fik
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC18074.2021.9586325
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665432740
1665432748
EndPage 192
ExternalDocumentID 9586325
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a287t-3e2529a0f53694e9489ecb87c45e9bc7a9405a05f7e8fd5587e6dcbc3a8d6a033
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766079700032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:28:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a287t-3e2529a0f53694e9489ecb87c45e9bc7a9405a05f7e8fd5587e6dcbc3a8d6a033
PageCount 6
ParticipantIDs ieee_primary_9586325
PublicationCentury 2000
PublicationDate 2021-Dec.-5
PublicationDateYYYYMMDD 2021-12-05
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-5
  day: 05
PublicationDecade 2020
PublicationTitle 2021 58th ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584060
Score 2.1937623
Snippet Dummy filling is widely applied to significantly improve the planarity of topographic patterns for the chemical mechanical polishing (CMP) process in VLSI...
SourceID ieee
SourceType Publisher
StartPage 187
SubjectTerms Backpropagation
Design automation
Filling
Manufacturing
Neural networks
Semiconductor device modeling
Very large scale integration
Title NeurFill: Migrating Full-Chip CMP Simulators to Neural Networks for Model-Based Dummy Filling Synthesis
URI https://ieeexplore.ieee.org/document/9586325
WOSCitedRecordID wos000766079700032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA7b8OBJZRN_k4NHs7VN0yTetHN4cGMwld1Gmr5qobZj7YT99yZdnQhePDU0aQIvod_Le-97D6FrZf67lLsJEcqabhKtSMRAEQMPvva0AcGa5fr6xCcTMZ_LaQvd7LgwAFAHn0HfNmtfflzotTWVDSQTAfVYG7U5D7Zcre-zY717BpuchqTjOnIwvAtdm-rFXAI9t998-6uISo0ho4P_rX6Iej9kPDzdwcwRakHeRW82qcYozbJbPE5tugfThe11koTv6RKH4ymepR-2NFexKnFVYDteZeZRR32X2Oiq2NZBy8i9wbEYD82B3GA7o51ptsmNYlimZQ-9jB6ew0fS1EwgRta8IhQ85knlJIwG0gfpCwk6Elz7DGSkuZJGQ1MOSziIJGZMcAhiHWmqRBwoh9Jj1MmLHE4QNqqI1L7nRXFsvZ8ioiC48v2YAvjK9U5R1wppsdymxVg08jn7-_U52rf7UEeCsAvUqVZruER7-rNKy9VVvZdfg5ug0A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEG8QTfRJDRi_7YOPDrZ-sNY3HRKMQEhA4xvpupsuwY0wMOG_tx0TY-KLT2vWrk2uzX7Xu_vdIXStzH-X-l7sCGVNN7FWTshBOQYemCbagGDBcn3p-YOBeH2Vwwq62XBhAKAIPoOGbRa-_CjTS2sqa0ouWpTwLbTNGSPumq31fXqsf8-gk1vSdDxXNtt3gWeTvZhrIPEa5de_yqgUKNLZ_9_6B6j-Q8fDww3QHKIKpDX0ZtNqdJLp9Bb3E5vwwXRhe6F0gvdkhoP-EI-SD1ucK5vneJFhO15NzaOI-86x0VaxrYQ2de4NkkW4bY7kCtsZ7UyjVWpUwzzJ6-i58zAOuk5ZNcEx0vYXDgXCiVRuzGlLMpBMSNCh8DXjIEPtK2l0NOXy2AcRR5wLH1qRDjVVImopl9IjVE2zFI4RNsqI1IyQMIqs_1OEFISvGIsoAFMeOUE1K6TJbJ0YY1LK5_Tv11dotzvu9ya9x8HTGdqze1LEhfBzVF3Ml3CBdvTnIsnnl8W-fgEP7KQX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+58th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=NeurFill%3A+Migrating+Full-Chip+CMP+Simulators+to+Neural+Networks+for+Model-Based+Dummy+Filling+Synthesis&rft.au=Cai%2C+Junzhe&rft.au=Yan%2C+Changhao&rft.au=Ma%2C+Yuzhe&rft.au=Yu%2C+Bei&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=187&rft.epage=192&rft_id=info:doi/10.1109%2FDAC18074.2021.9586325&rft.externalDocID=9586325