Invited: Accelerating Fully Homomorphic Encryption with Processing in Memory
Fully homomorphic encryption (FHE) provides a promising solution for future computing needs by allowing privacy-preserving computation. However, its practical use has been limited by the huge latency overhead it incurs while computing. This is primarily due to the huge size of encrypted data and int...
Uloženo v:
| Vydáno v: | 2021 58th ACM/IEEE Design Automation Conference (DAC) s. 1335 - 1338 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
05.12.2021
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Fully homomorphic encryption (FHE) provides a promising solution for future computing needs by allowing privacy-preserving computation. However, its practical use has been limited by the huge latency overhead it incurs while computing. This is primarily due to the huge size of encrypted data and intermediate processing required to compute on it. In this paper, we present insights into the benefits of accelerating FHE with processing in-memory (PIM). PIM is an excellent match for the FHE since it provides extensive parallelism, in-situ operations, and bit-level granularity. We present FHE-PIM, which implements basic polynomial primitives with PIM and uses them to accelerate key FHE operations in memory. This can significantly make the time-consuming procedure of FHE bootstrapping faster in memory. We compare the speedup of FHE-PIM for various FHE operations with their CPU implementations. FHE-PIM can achieve an estimated average throughput improvement of 88,397 \times as compared to CPU for FHE arithmetic operations. |
|---|---|
| AbstractList | Fully homomorphic encryption (FHE) provides a promising solution for future computing needs by allowing privacy-preserving computation. However, its practical use has been limited by the huge latency overhead it incurs while computing. This is primarily due to the huge size of encrypted data and intermediate processing required to compute on it. In this paper, we present insights into the benefits of accelerating FHE with processing in-memory (PIM). PIM is an excellent match for the FHE since it provides extensive parallelism, in-situ operations, and bit-level granularity. We present FHE-PIM, which implements basic polynomial primitives with PIM and uses them to accelerate key FHE operations in memory. This can significantly make the time-consuming procedure of FHE bootstrapping faster in memory. We compare the speedup of FHE-PIM for various FHE operations with their CPU implementations. FHE-PIM can achieve an estimated average throughput improvement of 88,397 \times as compared to CPU for FHE arithmetic operations. |
| Author | Rosing, Tajana Simunic Gupta, Saransh |
| Author_xml | – sequence: 1 givenname: Saransh surname: Gupta fullname: Gupta, Saransh email: sgupta@ucsd.edu organization: University of California,Computer Science and Engineering,San Diego La Jolla,USA – sequence: 2 givenname: Tajana Simunic surname: Rosing fullname: Rosing, Tajana Simunic email: tajana@ucsd.edu organization: University of California,Computer Science and Engineering,San Diego La Jolla,USA |
| BookMark | eNotj81KxDAcxCMoqGufQIS8wNYkzVe9lbrrLlT0oOclTf9xA920pFXp2xtwZ2Dm8mNgbtFlGAIg9EBJTikpH5-rmmqieM4Io3kptGRaXKCsVJpKKXjBFCfXKJsm3xJJhOYpb1CzDz9-hu4JV9ZCD9HMPnzh7XffL3g3nJLjePQWb4KNyzj7IeBfPx_xexwspLEE-4BfIXHLHbpypp8gO_cKfW43H_Vu3by97OuqWRum1bwugJRUia4kCii0jDktjGUtd66gxJRKGWZb0qnWSk6cAXCCJVAqJpJYsUL3_7seAA5j9CcTl8P5c_EHo7ZPvw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/DAC18074.2021.9586285 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665432740 1665432748 |
| EndPage | 1338 |
| ExternalDocumentID | 9586285 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH ACM ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO |
| ID | FETCH-LOGICAL-a287t-3e09175d907e1eb22f85ac2b4ff310a977a2cb0d7bc640faeef521eb672555523 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766079700227&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:28:29 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a287t-3e09175d907e1eb22f85ac2b4ff310a977a2cb0d7bc640faeef521eb672555523 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_9586285 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Dec.-5 |
| PublicationDateYYYYMMDD | 2021-12-05 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-Dec.-5 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 58th ACM/IEEE Design Automation Conference (DAC) |
| PublicationTitleAbbrev | DAC |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib060584060 |
| Score | 2.2208235 |
| Snippet | Fully homomorphic encryption (FHE) provides a promising solution for future computing needs by allowing privacy-preserving computation. However, its practical... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1335 |
| SubjectTerms | Arithmetic Cryptography Design automation fully homomorphic encryption Logic gates Parallel processing processing in-memory secure computation secure learning Throughput |
| Title | Invited: Accelerating Fully Homomorphic Encryption with Processing in Memory |
| URI | https://ieeexplore.ieee.org/document/9586285 |
| WOSCitedRecordID | wos000766079700227&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB3a4sGTSit-swePps33Jt5KbalQSw8KvZXdzaz0YCr9gv57Z7axIniRXEJI2DAb8t7bmTcLcC8LBo0IPZ3EkRcr4nBaF7FnLeGFwiCzxnXXH8nxOJtO80kNHg5eGER0xWfY5lOXyy8WZsNLZZ08ydjxV4e6lOneq_X97XB2j7DJr0w6gZ93nrq9gFu9kAgMg3b17K9NVByGDE7-N_optH7MeGJygJkzqGHZhNFzuWWy-Ci6xhBy8DyW74IF5U4MFx90UADnRvRLs9y534LgJVdRGQP45nkpXrjOdteCt0H_tTf0qo0RPEUCZ-1FSCgvk4KELQYkjUObJcqEOraW2JoiSqdCo_1CapPGvlWIllAadSpJQCQkPc-hUS5KvAAhOfFnfCvpZeNUhQoLImUmMjkNEmn_EpocidnnvvfFrArC1d-Xr-GYg-3KPZIbaKyXG7yFI7Ndz1fLOzdhX8TYmCw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0gmuhJDRi_3YNHC_3Y0tabQQjEQjhgwo3sbmcNB4tBIOHfO1MqxsSL6aVp2mwz2_S9tzNvFuA-yhg0AnR0KANHKuJwWmfSsZbwQqEXW1N010-j4TCeTJJRBR52XhhELIrPsMGnRS4_m5sVL5U1kzBmx98e7IdS-u7WrfX99XB-j9DJLW06nps0n5_aHjd7IRnoe43y6V_bqBQo0j3-3_gnUP-x44nRDmhOoYJ5DdJ-vma6-CiejCHs4JnM3wRLyo3ozd_poBDOjOjkZrEpfgyCF11FaQ3gm2e5GHCl7aYOr93OuN1zyq0RHEUSZ-kESDgfhRlJW_RIHPs2DpXxtbSW-JoiUqd8o90s0qYlXasQLeE06lZEEiIk8XkG1Xye4zmIiFN_xrURvaxsKV9hRrTMBCahQQLtXkCNIzH92Ha_mJZBuPz78h0c9saDdJr2hy9XcMSBL4o_wmuoLhcrvIEDs17OPhe3xeR9Ad9Zm3M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+58th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Invited%3A+Accelerating+Fully+Homomorphic+Encryption+with+Processing+in+Memory&rft.au=Gupta%2C+Saransh&rft.au=Rosing%2C+Tajana+Simunic&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=1335&rft.epage=1338&rft_id=info:doi/10.1109%2FDAC18074.2021.9586285&rft.externalDocID=9586285 |