Invited: Accelerating Fully Homomorphic Encryption with Processing in Memory

Fully homomorphic encryption (FHE) provides a promising solution for future computing needs by allowing privacy-preserving computation. However, its practical use has been limited by the huge latency overhead it incurs while computing. This is primarily due to the huge size of encrypted data and int...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2021 58th ACM/IEEE Design Automation Conference (DAC) s. 1335 - 1338
Hlavní autoři: Gupta, Saransh, Rosing, Tajana Simunic
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 05.12.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Fully homomorphic encryption (FHE) provides a promising solution for future computing needs by allowing privacy-preserving computation. However, its practical use has been limited by the huge latency overhead it incurs while computing. This is primarily due to the huge size of encrypted data and intermediate processing required to compute on it. In this paper, we present insights into the benefits of accelerating FHE with processing in-memory (PIM). PIM is an excellent match for the FHE since it provides extensive parallelism, in-situ operations, and bit-level granularity. We present FHE-PIM, which implements basic polynomial primitives with PIM and uses them to accelerate key FHE operations in memory. This can significantly make the time-consuming procedure of FHE bootstrapping faster in memory. We compare the speedup of FHE-PIM for various FHE operations with their CPU implementations. FHE-PIM can achieve an estimated average throughput improvement of 88,397 \times as compared to CPU for FHE arithmetic operations.
AbstractList Fully homomorphic encryption (FHE) provides a promising solution for future computing needs by allowing privacy-preserving computation. However, its practical use has been limited by the huge latency overhead it incurs while computing. This is primarily due to the huge size of encrypted data and intermediate processing required to compute on it. In this paper, we present insights into the benefits of accelerating FHE with processing in-memory (PIM). PIM is an excellent match for the FHE since it provides extensive parallelism, in-situ operations, and bit-level granularity. We present FHE-PIM, which implements basic polynomial primitives with PIM and uses them to accelerate key FHE operations in memory. This can significantly make the time-consuming procedure of FHE bootstrapping faster in memory. We compare the speedup of FHE-PIM for various FHE operations with their CPU implementations. FHE-PIM can achieve an estimated average throughput improvement of 88,397 \times as compared to CPU for FHE arithmetic operations.
Author Rosing, Tajana Simunic
Gupta, Saransh
Author_xml – sequence: 1
  givenname: Saransh
  surname: Gupta
  fullname: Gupta, Saransh
  email: sgupta@ucsd.edu
  organization: University of California,Computer Science and Engineering,San Diego La Jolla,USA
– sequence: 2
  givenname: Tajana Simunic
  surname: Rosing
  fullname: Rosing, Tajana Simunic
  email: tajana@ucsd.edu
  organization: University of California,Computer Science and Engineering,San Diego La Jolla,USA
BookMark eNotj81KxDAcxCMoqGufQIS8wNYkzVe9lbrrLlT0oOclTf9xA920pFXp2xtwZ2Dm8mNgbtFlGAIg9EBJTikpH5-rmmqieM4Io3kptGRaXKCsVJpKKXjBFCfXKJsm3xJJhOYpb1CzDz9-hu4JV9ZCD9HMPnzh7XffL3g3nJLjePQWb4KNyzj7IeBfPx_xexwspLEE-4BfIXHLHbpypp8gO_cKfW43H_Vu3by97OuqWRum1bwugJRUia4kCii0jDktjGUtd66gxJRKGWZb0qnWSk6cAXCCJVAqJpJYsUL3_7seAA5j9CcTl8P5c_EHo7ZPvw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC18074.2021.9586285
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665432740
1665432748
EndPage 1338
ExternalDocumentID 9586285
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a287t-3e09175d907e1eb22f85ac2b4ff310a977a2cb0d7bc640faeef521eb672555523
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766079700227&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:28:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a287t-3e09175d907e1eb22f85ac2b4ff310a977a2cb0d7bc640faeef521eb672555523
PageCount 4
ParticipantIDs ieee_primary_9586285
PublicationCentury 2000
PublicationDate 2021-Dec.-5
PublicationDateYYYYMMDD 2021-12-05
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-5
  day: 05
PublicationDecade 2020
PublicationTitle 2021 58th ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584060
Score 2.2208235
Snippet Fully homomorphic encryption (FHE) provides a promising solution for future computing needs by allowing privacy-preserving computation. However, its practical...
SourceID ieee
SourceType Publisher
StartPage 1335
SubjectTerms Arithmetic
Cryptography
Design automation
fully homomorphic encryption
Logic gates
Parallel processing
processing in-memory
secure computation
secure learning
Throughput
Title Invited: Accelerating Fully Homomorphic Encryption with Processing in Memory
URI https://ieeexplore.ieee.org/document/9586285
WOSCitedRecordID wos000766079700227&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB3a4sGTSit-swePps33Jt5KbalQSw8KvZXdzaz0YCr9gv57Z7axIniRXEJI2DAb8t7bmTcLcC8LBo0IPZ3EkRcr4nBaF7FnLeGFwiCzxnXXH8nxOJtO80kNHg5eGER0xWfY5lOXyy8WZsNLZZ08ydjxV4e6lOneq_X97XB2j7DJr0w6gZ93nrq9gFu9kAgMg3b17K9NVByGDE7-N_optH7MeGJygJkzqGHZhNFzuWWy-Ci6xhBy8DyW74IF5U4MFx90UADnRvRLs9y534LgJVdRGQP45nkpXrjOdteCt0H_tTf0qo0RPEUCZ-1FSCgvk4KELQYkjUObJcqEOraW2JoiSqdCo_1CapPGvlWIllAadSpJQCQkPc-hUS5KvAAhOfFnfCvpZeNUhQoLImUmMjkNEmn_EpocidnnvvfFrArC1d-Xr-GYg-3KPZIbaKyXG7yFI7Ndz1fLOzdhX8TYmCw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0gmuhJDRi_3YNHC_3Y0tabQQjEQjhgwo3sbmcNB4tBIOHfO1MqxsSL6aVp2mwz2_S9tzNvFuA-yhg0AnR0KANHKuJwWmfSsZbwQqEXW1N010-j4TCeTJJRBR52XhhELIrPsMGnRS4_m5sVL5U1kzBmx98e7IdS-u7WrfX99XB-j9DJLW06nps0n5_aHjd7IRnoe43y6V_bqBQo0j3-3_gnUP-x44nRDmhOoYJ5DdJ-vma6-CiejCHs4JnM3wRLyo3ozd_poBDOjOjkZrEpfgyCF11FaQ3gm2e5GHCl7aYOr93OuN1zyq0RHEUSZ-kESDgfhRlJW_RIHPs2DpXxtbSW-JoiUqd8o90s0qYlXasQLeE06lZEEiIk8XkG1Xye4zmIiFN_xrURvaxsKV9hRrTMBCahQQLtXkCNIzH92Ha_mJZBuPz78h0c9saDdJr2hy9XcMSBL4o_wmuoLhcrvIEDs17OPhe3xeR9Ad9Zm3M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+58th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Invited%3A+Accelerating+Fully+Homomorphic+Encryption+with+Processing+in+Memory&rft.au=Gupta%2C+Saransh&rft.au=Rosing%2C+Tajana+Simunic&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=1335&rft.epage=1338&rft_id=info:doi/10.1109%2FDAC18074.2021.9586285&rft.externalDocID=9586285