Reinforcement Learning-Assisted Cache Cleaning to Mitigate Long-Tail Latency in DM-SMR

DM-SMR adopts Persistent Cache (PC) to accommodate non-sequential write operations. However, the PC cleaning process induces severe long-tail latency. In this paper, we propose to mitigate the tail latency of PC cleaning by using Reinforcement Learning (RL). Specifically, a real-time lightweight Q-l...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2021 58th ACM/IEEE Design Automation Conference (DAC) s. 103 - 108
Hlavní autoři: Pan, Yungang, Jia, Zhiping, Shen, Zhaoyan, Li, Bingzhe, Chang, Wanli, Shao, Zili
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 05.12.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract DM-SMR adopts Persistent Cache (PC) to accommodate non-sequential write operations. However, the PC cleaning process induces severe long-tail latency. In this paper, we propose to mitigate the tail latency of PC cleaning by using Reinforcement Learning (RL). Specifically, a real-time lightweight Q-learning model is built to analyze the idle window of I/O workloads, based on which PC cleaning is judiciously scheduled, thereby maximally utilizing the I/O idle window and effectively hiding the tail latency from regular requests. We implement our technique inside a Linux device driver with an emulated SMR drive. Experimental results show that our technique can reduce the tail latency by 57.65% at 99.9th percentile and the average response time by 46.11% compared to a typical SMR design.
AbstractList DM-SMR adopts Persistent Cache (PC) to accommodate non-sequential write operations. However, the PC cleaning process induces severe long-tail latency. In this paper, we propose to mitigate the tail latency of PC cleaning by using Reinforcement Learning (RL). Specifically, a real-time lightweight Q-learning model is built to analyze the idle window of I/O workloads, based on which PC cleaning is judiciously scheduled, thereby maximally utilizing the I/O idle window and effectively hiding the tail latency from regular requests. We implement our technique inside a Linux device driver with an emulated SMR drive. Experimental results show that our technique can reduce the tail latency by 57.65% at 99.9th percentile and the average response time by 46.11% compared to a typical SMR design.
Author Chang, Wanli
Li, Bingzhe
Shen, Zhaoyan
Pan, Yungang
Shao, Zili
Jia, Zhiping
Author_xml – sequence: 1
  givenname: Yungang
  surname: Pan
  fullname: Pan, Yungang
  email: dlzrmr@mail.sdu.edu.cn
  organization: Shandong University,School of Computer Science and Technology,Qingdao,China
– sequence: 2
  givenname: Zhiping
  surname: Jia
  fullname: Jia, Zhiping
  email: jzp@sdu.edu.cn
  organization: Shandong University,School of Computer Science and Technology,Qingdao,China
– sequence: 3
  givenname: Zhaoyan
  surname: Shen
  fullname: Shen, Zhaoyan
  email: shenzhaoyan@sdu.edu.cn
  organization: Shandong University,School of Computer Science and Technology,Qingdao,China
– sequence: 4
  givenname: Bingzhe
  surname: Li
  fullname: Li, Bingzhe
  email: bingzhe.li@okstate.edu
  organization: Oklahoma State University,School of Electrical and Computer Engineering,Stillwater,OK,United States
– sequence: 5
  givenname: Wanli
  surname: Chang
  fullname: Chang, Wanli
  email: wanli.chang@york.ac.uk
  organization: Hunan University,College of Computer Science and Electronic Engineering,Changsha,China
– sequence: 6
  givenname: Zili
  surname: Shao
  fullname: Shao, Zili
  email: shao@cse.cuhk.edu.hk
  organization: The Chinese University of Hong Kong,Department of Computer Science and Engineering,Shatin,NT,Hong Kong
BookMark eNotj9tKxDAYhCMoqGufQIS8QNf8aU69LF1P0CKsq7dLkv5ZA91U2t7s21txb2aY4WNgbsllGhIS8gBsDcDKx01Vg2FarDnjsC6lUcyIC5KV2oBSUhRcC3ZNsmmKjikmjVj0hnxtMaYwjB6PmGbaoB1TTIe8Wrhpxo7W1n8jrXu0fz2dB9rGOR7sjLQZFnBnY0-bJSZ_ojHRTZt_tNs7chVsP2F29hX5fH7a1a958_7yVldNbrnRc16oIJwK4IIrCimMDwgCuNOsUwvhApdeBqOl7LQO4K0GI7UoUWkAL8piRe7_dyMi7n_GeLTjaX9-X_wCWmxRVw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC18074.2021.9586084
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665432740
1665432748
EndPage 108
ExternalDocumentID 9586084
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a287t-36f4b6f1bfb33548cfe1412b70d6a28bf25c5f8755d77f1ca7185749e6711c493
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766079700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:28:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a287t-36f4b6f1bfb33548cfe1412b70d6a28bf25c5f8755d77f1ca7185749e6711c493
PageCount 6
ParticipantIDs ieee_primary_9586084
PublicationCentury 2000
PublicationDate 2021-Dec.-5
PublicationDateYYYYMMDD 2021-12-05
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-5
  day: 05
PublicationDecade 2020
PublicationTitle 2021 58th ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584060
Score 2.2331784
Snippet DM-SMR adopts Persistent Cache (PC) to accommodate non-sequential write operations. However, the PC cleaning process induces severe long-tail latency. In this...
SourceID ieee
SourceType Publisher
StartPage 103
SubjectTerms Cleaning
Cleaning Process
Design automation
Idle Time Window
Linux
Real-time systems
Reinforcement learning
Shingled Magnetic Recording
Tail-Latency
Time factors
Timing
Title Reinforcement Learning-Assisted Cache Cleaning to Mitigate Long-Tail Latency in DM-SMR
URI https://ieeexplore.ieee.org/document/9586084
WOSCitedRecordID wos000766079700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1t8eBJpRW_ycGjaTe7-TzK1uKhLaVW6a1ssokslF2pW8F_b5KuFcGLtzAkBN4EJi-ZeQPArVaCC0kootIxHSKsRYKYBNmMmTihKiZUhWYTfDoVy6WctcDdvhbGGBOSz0zfD8Nffl7prX8qG0gqWCRIG7Q557tare-z43_3XGyKmiIdHMnB8D7FXurFkcAY95u1v5qohBgyOvrf7seg91OMB2f7MHMCWqbsgpe5CZKnOrzuwUYl9RU5tL3fcph6oWaYrk3m7bCu4KQIchoGjis3cZEVazjO_I35ExYlHE7Q02TeA8-jh0X6iJoWCShzVKdGCbNEMYuVVUniyIe2BhMcKx7lzM1QNqaaWsdJaM65xTrjXvuJSMM4xprI5BR0yqo0ZwDqPNZUy5g5Xuk4M82oQ8BGNnLgappE56DrMVm97VQwVg0cF3-bL8Ghhz0kftAr0Kk3W3MNDvRHXbxvboLrvgD-y5ko
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zCnpS2cTf5uDRbE2atM1ROmViO8acstto0kQKo5XZCf73JlmdCF68hUdC4HuBl-8l73sAXEsRhRGnDDFumA6NtEYRVT7SWaCIzwShTLhmE-FoFM1mfNwCN5taGKWU-3ymenbo3vLzSq5sqqzPWRR4Ed0C24xSgtfVWt-nx77vmejkNWU62OP9wW2MrdiLoYEE95rVv9qouChyv_-__Q9A96ccD443geYQtFTZAS8T5URPpcvvwUYn9RUZvK3nchhbqWYYL1Rm7bCuYFo4QQ0Fk8pMnGbFAiaZvTN_wqKEgxQ9pZMueL6_m8ZD1DRJQJkhOzXyA01FoLHQwvcN_ZBaYYqJCL08MDOEJkwybVgJy8NQY5mFVv2JchWEGEvK_SPQLqtSHQMocyKZ5CQwzNKwZpYxg4D2tGfAlcz3TkDHYjJ_W-tgzBs4Tv82X4Hd4TRN5snD6PEM7FkXuG8g7By06-VKXYAd-VEX78tL58YvJ92cbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+58th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Reinforcement+Learning-Assisted+Cache+Cleaning+to+Mitigate+Long-Tail+Latency+in+DM-SMR&rft.au=Pan%2C+Yungang&rft.au=Jia%2C+Zhiping&rft.au=Shen%2C+Zhaoyan&rft.au=Li%2C+Bingzhe&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=103&rft.epage=108&rft_id=info:doi/10.1109%2FDAC18074.2021.9586084&rft.externalDocID=9586084