Softermax: Hardware/Software Co-Design of an Efficient Softmax for Transformers
Transformers have transformed the field of natural language processing. Their superior performance is largely attributed to the use of stacked "self-attention" layers, each of which consists of matrix multiplies as well as softmax operations. As a result, unlike other neural networks, the...
Gespeichert in:
| Veröffentlicht in: | 2021 58th ACM/IEEE Design Automation Conference (DAC) S. 469 - 474 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
05.12.2021
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Transformers have transformed the field of natural language processing. Their superior performance is largely attributed to the use of stacked "self-attention" layers, each of which consists of matrix multiplies as well as softmax operations. As a result, unlike other neural networks, the softmax operation accounts for a significant fraction of the total run-time of Transformers. To address this, we propose Softermax, a hardware-friendly softmax design. Softermax consists of base replacement, low-precision softmax computations, and an online normalization calculation. We show Softermax results in 2.35x the energy efficiency at 0.90x the size of a comparable baseline, with negligible impact on network accuracy. |
|---|---|
| DOI: | 10.1109/DAC18074.2021.9586134 |