Sparseloop: An Analytical Approach To Sparse Tensor Accelerator Modeling
In recent years, many accelerators have been proposed to efficiently process sparse tensor algebra applications (e.g., sparse neural networks). However, these proposals are single points in a large and diverse design space. The lack of systematic description and modeling support for these sparse ten...
Gespeichert in:
| Veröffentlicht in: | 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO) S. 1377 - 1395 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.10.2022
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In recent years, many accelerators have been proposed to efficiently process sparse tensor algebra applications (e.g., sparse neural networks). However, these proposals are single points in a large and diverse design space. The lack of systematic description and modeling support for these sparse tensor accelerators impedes hardware designers from efficient and effective design space exploration. This paper first presents a unified taxonomy to systematically describe the diverse sparse tensor accelerator design space. Based on the proposed taxonomy, it then introduces Sparseloop, the first fast, accurate, and flexible analytical modeling framework to enable early-stage evaluation and exploration of sparse tensor accelerators. Sparseloop comprehends a large set of architecture specifications, including various dataflows and sparse acceleration features (e.g., elimination of zero-based compute). Using these specifications, Sparseloop evaluates a design's processing speed and energy efficiency while accounting for data movement and compute incurred by the employed dataflow, including the savings and overhead introduced by the sparse acceleration features using stochastic density models. Across representative accelerator designs and workloads, Sparseloop achieves over 2000× faster modeling speed than cycle-level simulations, maintains relative performance trends, and achieves 0.1% to 8% average error. The paper also presents example use cases of Sparseloop in different accelerator design flows to reveal important design insights. |
|---|---|
| AbstractList | In recent years, many accelerators have been proposed to efficiently process sparse tensor algebra applications (e.g., sparse neural networks). However, these proposals are single points in a large and diverse design space. The lack of systematic description and modeling support for these sparse tensor accelerators impedes hardware designers from efficient and effective design space exploration. This paper first presents a unified taxonomy to systematically describe the diverse sparse tensor accelerator design space. Based on the proposed taxonomy, it then introduces Sparseloop, the first fast, accurate, and flexible analytical modeling framework to enable early-stage evaluation and exploration of sparse tensor accelerators. Sparseloop comprehends a large set of architecture specifications, including various dataflows and sparse acceleration features (e.g., elimination of zero-based compute). Using these specifications, Sparseloop evaluates a design's processing speed and energy efficiency while accounting for data movement and compute incurred by the employed dataflow, including the savings and overhead introduced by the sparse acceleration features using stochastic density models. Across representative accelerator designs and workloads, Sparseloop achieves over 2000× faster modeling speed than cycle-level simulations, maintains relative performance trends, and achieves 0.1% to 8% average error. The paper also presents example use cases of Sparseloop in different accelerator design flows to reveal important design insights. |
| Author | Tsai, Po-An Parashar, Angshuman Sze, Vivienne Wu, Yannan Nellie Emer, Joel S. |
| Author_xml | – sequence: 1 givenname: Yannan Nellie surname: Wu fullname: Wu, Yannan Nellie email: nelliewu@mit.edu organization: MIT,Cambridge,US – sequence: 2 givenname: Po-An surname: Tsai fullname: Tsai, Po-An email: poant@nvidia.com organization: NVIDIA,Westford,US – sequence: 3 givenname: Angshuman surname: Parashar fullname: Parashar, Angshuman email: aparashar@nvidia.com organization: NVIDIA,Westford,US – sequence: 4 givenname: Vivienne surname: Sze fullname: Sze, Vivienne email: sze@mit.edu organization: MIT,Cambridge,US – sequence: 5 givenname: Joel S. surname: Emer fullname: Emer, Joel S. email: jsemer@mit.edu organization: MIT / NVIDIA,Cambridge,US |
| BookMark | eNotjF1LwzAYRiMoqLO_QIT8gdV8f3hXirrBxkDr9UiTN1qITUl7s3_vYMID51wcnnt0PeYREHqipKaU2Of9tv04SMWEqRlhrCaEWHWFKqsNVUoKxTTjt6ia56EnkkttmJR3aPM5uTJDynl6wc14nkunZfAu4WaaSnb-B3cZXyrcwTjnghvvIUFxy9n3OUAaxu8HdBNdmqH65wp9vb127Wa9O7xv22a3dszoZU2ZFD6AdZRy46gPXnqhbOyDAsJ5jNQI6fpAg3YqisiJNFxCpFIYHwjhK_R4-R0A4DiV4deV09Faxg3R_A8SDU3- |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/MICRO56248.2022.00096 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665462723 1665462728 |
| EndPage | 1395 |
| ExternalDocumentID | 9923807 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK LHSKQ RIE RIL |
| ID | FETCH-LOGICAL-a287t-1254cde9a1138a1cdc5c469fbd6e033ff1845abd1d7a6f4f305835ef1548cd003 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 47 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000886530600080&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:51:45 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a287t-1254cde9a1138a1cdc5c469fbd6e033ff1845abd1d7a6f4f305835ef1548cd003 |
| PageCount | 19 |
| ParticipantIDs | ieee_primary_9923807 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Oct. |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct. |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO) |
| PublicationTitleAbbrev | MICRO |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib053578255 |
| Score | 2.4622266 |
| Snippet | In recent years, many accelerators have been proposed to efficiently process sparse tensor algebra applications (e.g., sparse neural networks). However, these... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1377 |
| SubjectTerms | Analytical modeling Analytical models Computational modeling Hardware Accelerator Neural networks Stochastic processes Systematics Taxonomy Tensor computation Tensors |
| Title | Sparseloop: An Analytical Approach To Sparse Tensor Accelerator Modeling |
| URI | https://ieeexplore.ieee.org/document/9923807 |
| WOSCitedRecordID | wos000886530600080&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKxcAEqEV8ywMjpkltJw5bhag6lQqK1K2Kz2cJCSVVafn9nJ3QLixsUWIpyjnWu2ffe8fYHYDKweVSOF9YoVKLwvihFQYJELBQ1oGJzSby6dQsFsWsw-53WhhEjMVn-BAu41m-q2EbtsoGBWUjJkjHD_I8a7Rav_-ODq4tlB63Ip00KQb0Ga8vBO-xgmsYfTmjNf--iUrEkPHx_95-wvp7MR6f7WDmlHWw6rHJ24oYKX7W9eqRjyoevUXitjQftS7hfF7zZhSfE1et13wEQCATz9V56IEWlOh99j5-nj9NRNsUQZREbjaCEhIFDosyTaUpU3CggSiuty7DRErvibLp0rrU5WXmlaf1TEkW-kBNwNEaPmPdqq7wnPGMhmkl0etE0kNplfYlJi4xPtNEiy5YL0RhuWp8L5ZtAC7_vn3FjkKYm0K3a9bdrLd4ww7he_Pxtb6Nk_UDHu-WzA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5DBT2pbOJvc_BoXLskbeptiGPinEMr7Daa5AUEacfc_Pt9Set28eKttIHSl4bvfcn7vkfItTEiNTblzLpMMxFrYMr1NFOAgACZ0Nao0GwiHY_VdJpNWuRmrYUBgFB8Brf-Mpzl28qs_FZZN8NsRHnp-LYUohfVaq3fv0d63xZMkBuZThxlXfyQ1xcE-FDD1QvOnMGcf9NGJaDIYP9_7z8gnY0cj07WQHNIWlC2yfBtjpwUPqtqfkf7JQ3uImFjmvYbn3CaV7QeRXNkq9WC9o1BmAkn69R3QfNa9A55Hzzk90PWtEVgBdKbJcOURBgLWRHHXBWxsUYaJLlO2wQizp1D0iYLbWObFokTDlc0plngPDkxFlfxEdkqqxKOCU1wmBQcnIw4PuRaSFdAZCPlEonE6IS0fRRm89r5YtYE4PTv21dkd5g_j2ajx_HTGdnzIa_L3s7J1nKxgguyY76XH1-LyzBxPyjsmhM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+55th+IEEE%2FACM+International+Symposium+on+Microarchitecture+%28MICRO%29&rft.atitle=Sparseloop%3A+An+Analytical+Approach+To+Sparse+Tensor+Accelerator+Modeling&rft.au=Wu%2C+Yannan+Nellie&rft.au=Tsai%2C+Po-An&rft.au=Parashar%2C+Angshuman&rft.au=Sze%2C+Vivienne&rft.date=2022-10-01&rft.pub=IEEE&rft.spage=1377&rft.epage=1395&rft_id=info:doi/10.1109%2FMICRO56248.2022.00096&rft.externalDocID=9923807 |