TSUNAMI: A GPU Implementation of the WFA Algorithm

Pairwise sequence alignment represents a fundamental step in the genome assembly pipeline, being the most time-consuming step and the bottleneck factor in multiple bioinformatics applications. Exact pairwise alignment methods like Smith-Waterman and Needleman-Wunsch, often cannot satisfy the perform...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2023 32nd International Conference on Parallel Architectures and Compilation Techniques (PACT) s. 150 - 161
Hlavní autoři: Gerometta, Giulia, Zeni, Alberto, Santambrogio, Marco D.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 21.10.2023
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Pairwise sequence alignment represents a fundamental step in the genome assembly pipeline, being the most time-consuming step and the bottleneck factor in multiple bioinformatics applications. Exact pairwise alignment methods like Smith-Waterman and Needleman-Wunsch, often cannot satisfy the performance required by these tools because of their quadratic time complexity. Furthermore, given the increasing computational cost of analyzing third-generation sequences, the community is moving towards different alignment methods and hardware-accelerated solutions to overcome the limitations of these algorithms. In this scenario, we present TSUNAMI, a highly-optimized implementation of the WaveFront Alignment (WFA) algorithm on GPU. TSUNAMI exploits GPU high-parallel computing to accelerate the WFA algorithm, a novel alignment methodology exploiting homologous regions between the target sequences. By doing so, we are able to reduce both time and space complexity in our GPU implementation. Our results show that TSUNAMI achieves improvements up to 4512.28× in terms of speedup when compared to the multi-threaded state-of-the-art software implementation run on Intel Xeon Silver 4208 using 16 threads in total. We also compared our design with all the recently released hardware-accelerated solutions present in the State Of the Art, observing speedups up to 14.81×with respect to the best performing hardware-accelerated implementation in the literature, reaching up to 42604.98 Giga Cell Updates Per Second in our best configuration. TSUNAMI also supports aligning very erroneous long sequences, rendering our implementation much more useful in real-world scenarios. Finally, to prove the efficiency of our design, we evaluate TSUNAMI exploiting the Berkeley Roofline model and demonstrate that our implementation is near-optimal on the NVIDIA Tesla H100.
AbstractList Pairwise sequence alignment represents a fundamental step in the genome assembly pipeline, being the most time-consuming step and the bottleneck factor in multiple bioinformatics applications. Exact pairwise alignment methods like Smith-Waterman and Needleman-Wunsch, often cannot satisfy the performance required by these tools because of their quadratic time complexity. Furthermore, given the increasing computational cost of analyzing third-generation sequences, the community is moving towards different alignment methods and hardware-accelerated solutions to overcome the limitations of these algorithms. In this scenario, we present TSUNAMI, a highly-optimized implementation of the WaveFront Alignment (WFA) algorithm on GPU. TSUNAMI exploits GPU high-parallel computing to accelerate the WFA algorithm, a novel alignment methodology exploiting homologous regions between the target sequences. By doing so, we are able to reduce both time and space complexity in our GPU implementation. Our results show that TSUNAMI achieves improvements up to 4512.28× in terms of speedup when compared to the multi-threaded state-of-the-art software implementation run on Intel Xeon Silver 4208 using 16 threads in total. We also compared our design with all the recently released hardware-accelerated solutions present in the State Of the Art, observing speedups up to 14.81×with respect to the best performing hardware-accelerated implementation in the literature, reaching up to 42604.98 Giga Cell Updates Per Second in our best configuration. TSUNAMI also supports aligning very erroneous long sequences, rendering our implementation much more useful in real-world scenarios. Finally, to prove the efficiency of our design, we evaluate TSUNAMI exploiting the Berkeley Roofline model and demonstrate that our implementation is near-optimal on the NVIDIA Tesla H100.
Author Zeni, Alberto
Santambrogio, Marco D.
Gerometta, Giulia
Author_xml – sequence: 1
  givenname: Giulia
  surname: Gerometta
  fullname: Gerometta, Giulia
  email: giulia.gerometta@mail.polimi.it
  organization: Informatica e Bioingegneria, Politecnico di Milano,Dipartimento di Elettronica,Milan,Italy
– sequence: 2
  givenname: Alberto
  surname: Zeni
  fullname: Zeni, Alberto
  email: alberto.zeni@polimi.it
  organization: Informatica e Bioingegneria, Politecnico di Milano,Dipartimento di Elettronica,Milan,Italy
– sequence: 3
  givenname: Marco D.
  surname: Santambrogio
  fullname: Santambrogio, Marco D.
  email: marco.santambrogio@polimi.it
  organization: Informatica e Bioingegneria, Politecnico di Milano,Dipartimento di Elettronica,Milan,Italy
BookMark eNotzstKw0AUgOERFNSaN-hiXiDxnLmPuyHYGqhaMMFlyeXEBnIpSTa-vYKu_t3Hf8-ux2kkxrYICSL4x2NIc-0QbSJAyAQABF6xyFvvpAaphFbylkXL0lWgrZVWeHnHRP5RvIXX7IkHvj8WPBsuPQ00ruXaTSOfWr6eiX_uAg_91zR363l4YDdt2S8U_XfDit1znr7Eh_d9loZDXApn1thI7ckoaBQ2SqOpanKVV9YZR6Jpm7qqpDO1-73TCtumFV4jlIi-1ug9yA3b_rkdEZ0uczeU8_cJQRqlrZA_JAxC-A
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PACT58117.2023.00021
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350342543
EndPage 161
ExternalDocumentID 10364572
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
LHSKQ
RIE
RIL
ID FETCH-LOGICAL-a286t-6359e640d41d4516bce8b947868e2dfdcbb386c8835541fdf29510a119c519903
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001165646800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:24:17 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a286t-6359e640d41d4516bce8b947868e2dfdcbb386c8835541fdf29510a119c519903
PageCount 12
ParticipantIDs ieee_primary_10364572
PublicationCentury 2000
PublicationDate 2023-Oct.-21
PublicationDateYYYYMMDD 2023-10-21
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-21
  day: 21
PublicationDecade 2020
PublicationTitle 2023 32nd International Conference on Parallel Architectures and Compilation Techniques (PACT)
PublicationTitleAbbrev PACT
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib057737293
Score 2.2494173
Snippet Pairwise sequence alignment represents a fundamental step in the genome assembly pipeline, being the most time-consuming step and the bottleneck factor in...
SourceID ieee
SourceType Publisher
StartPage 150
SubjectTerms Genome Alignment
GPU
Graphics processing units
HPC
Pipelines
Rendering (computer graphics)
Silver
Software
Software algorithms
Tsunami
WFA
Title TSUNAMI: A GPU Implementation of the WFA Algorithm
URI https://ieeexplore.ieee.org/document/10364572
WOSCitedRecordID wos001165646800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYmACRBHf8sCakjhObLNFFQUGqki0oltlx2eoRBMUUn4_OTcFFgY224t1_rh78vndI-QKU1Wamyhw3OmAc8EDmRjVdq1gMdhEaevFJsR4LGczlXdkdc-FAQD_-QwG2PS5fFsVK3wqa284Js1E63G3hRBrstbm8CQCBVdU3NHjolBd59lwkiCRcoAa4VipECuC_hJR8TFktPfP2fdJ_4eNR_PvOHNAtqA8JGzyNB1njw83NKN3-ZT6Kr_LjkhU0srRFtnR51FGs7eXql40r8s-mY5uJ8P7oNM_CDSTaRO0WEBBykPLI4t6uqYAaRQXMpXArLOFMbFMCykRM0TOOoZwSUeRKlpcpsL4iPTKqoRjQhm3RoUtFIkZ8NSB1ikwSBITaqMsS09IHw2ev69LXMw3tp7-MX5GdnFN0Ymz6Jz0mnoFF2Sn-GwWH_Wl35gvCXKLqQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQQYIJEEV844E1JXacxGaLKkor2igSqehW2fEFKtEGlZTfTy5NgYWBzfZinT_unnx-9wi5wVSVFoY5uci1I0QoHOkbVXVtyD2wvtK2FpsI41hOJippyOo1FwYA6s9n0MFmncu3RbbCp7LqhmPSLKw87rYvBGdrutbm-PghSq4oryHIMVfdJlE39ZFK2UGVcKxViDVBf8mo1FGkt__P-Q9I-4ePR5PvSHNItmBxRHj6NI6j0eCORvQhGdO6zu-8oRItaJHTCtvR515Eo7eXYjkrX-dtMu7dp92-0yggOJrLoHQqNKAgEK4VzKKirslAGiVCGUjgNreZMZ4MMikRNbDc5hwBk2ZMZRUyU653TFqLYgEnhHJhjXIrMOJxEEEOWgfAwfeNq42yPDglbTR4-r4ucjHd2Hr2x_g12e2no-F0OIgfz8keri-6dM4uSKtcruCS7GSf5exjeVVv0heFFI7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+32nd+International+Conference+on+Parallel+Architectures+and+Compilation+Techniques+%28PACT%29&rft.atitle=TSUNAMI%3A+A+GPU+Implementation+of+the+WFA+Algorithm&rft.au=Gerometta%2C+Giulia&rft.au=Zeni%2C+Alberto&rft.au=Santambrogio%2C+Marco+D.&rft.date=2023-10-21&rft.pub=IEEE&rft.spage=150&rft.epage=161&rft_id=info:doi/10.1109%2FPACT58117.2023.00021&rft.externalDocID=10364572