RobOT: Robustness-Oriented Testing for Deep Learning Systems

Recently, there has been a significant growth of interest in applying software engineering techniques for the quality assurance of deep learning (DL) systems. One popular direction is deep learning testing, where adversarial examples (a.k.a.~bugs) of DL systems are found either by fuzzing or guided...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings / International Conference on Software Engineering s. 300 - 311
Hlavní autori: Wang, Jingyi, Chen, Jialuo, Sun, Youcheng, Ma, Xingjun, Wang, Dongxia, Sun, Jun, Cheng, Peng
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.05.2021
Predmet:
ISBN:1665402962, 9781665402965
ISSN:1558-1225
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recently, there has been a significant growth of interest in applying software engineering techniques for the quality assurance of deep learning (DL) systems. One popular direction is deep learning testing, where adversarial examples (a.k.a.~bugs) of DL systems are found either by fuzzing or guided search with the help of certain testing metrics. However, recent studies have revealed that the commonly used neuron coverage metrics by existing DL testing approaches are not correlated to model robustness. It is also not an effective measurement on the confidence of the model robustness after testing. In this work, we address this gap by proposing a novel testing framework called Robustness-Oriented Testing (RobOT). A key part of RobOT is a quantitative measurement on 1) the value of each test case in improving model robustness (often via retraining), and 2) the convergence quality of the model robustness improvement. RobOT utilizes the proposed metric to automatically generate test cases valuable for improving model robustness. The proposed metric is also a strong indicator on how well robustness improvement has converged through testing. Experiments on multiple benchmark datasets confirm the effectiveness and efficiency of RobOT in improving DL model robustness, with 67.02% increase on the adversarial robustness that is 50.65% higher than the state-of-the-art work DeepGini.
AbstractList Recently, there has been a significant growth of interest in applying software engineering techniques for the quality assurance of deep learning (DL) systems. One popular direction is deep learning testing, where adversarial examples (a.k.a.~bugs) of DL systems are found either by fuzzing or guided search with the help of certain testing metrics. However, recent studies have revealed that the commonly used neuron coverage metrics by existing DL testing approaches are not correlated to model robustness. It is also not an effective measurement on the confidence of the model robustness after testing. In this work, we address this gap by proposing a novel testing framework called Robustness-Oriented Testing (RobOT). A key part of RobOT is a quantitative measurement on 1) the value of each test case in improving model robustness (often via retraining), and 2) the convergence quality of the model robustness improvement. RobOT utilizes the proposed metric to automatically generate test cases valuable for improving model robustness. The proposed metric is also a strong indicator on how well robustness improvement has converged through testing. Experiments on multiple benchmark datasets confirm the effectiveness and efficiency of RobOT in improving DL model robustness, with 67.02% increase on the adversarial robustness that is 50.65% higher than the state-of-the-art work DeepGini.
Author Wang, Jingyi
Wang, Dongxia
Ma, Xingjun
Sun, Jun
Chen, Jialuo
Cheng, Peng
Sun, Youcheng
Author_xml – sequence: 1
  givenname: Jingyi
  surname: Wang
  fullname: Wang, Jingyi
  email: wangjyee@zju.edu.cn
  organization: Zhejiang University
– sequence: 2
  givenname: Jialuo
  surname: Chen
  fullname: Chen, Jialuo
  email: chenjialuo@zju.edu.cn
  organization: Zhejiang University
– sequence: 3
  givenname: Youcheng
  surname: Sun
  fullname: Sun, Youcheng
  email: youcheng.sun@qub.ac.uk
  organization: Queen's University Belfast
– sequence: 4
  givenname: Xingjun
  surname: Ma
  fullname: Ma, Xingjun
  email: daniel.ma@deakin.edu.au
  organization: Deakin University
– sequence: 5
  givenname: Dongxia
  surname: Wang
  fullname: Wang, Dongxia
  email: dxwang@zju.edu.cn
  organization: Zhejiang University
– sequence: 6
  givenname: Jun
  surname: Sun
  fullname: Sun, Jun
  email: junsun@smu.edu.sg
  organization: Singapore Management University
– sequence: 7
  givenname: Peng
  surname: Cheng
  fullname: Cheng, Peng
  email: lunarheart@zju.edu.cn
  organization: Zhejiang University
BookMark eNotz81Kw0AYheEBK9jWXoEucgOJ3_xmRtxIrFoIBGxcl5nJFwnYSZmJi969kbp64F0cOCuyCGNAQu4pFJSCedhV-63gBljBgNECALi-IiuqlBTAjGILsqRS6pwyJm_IJqXBgRCloaDEkjx9jK5pH7OZnzQFTClv4oBhwi5rMU1D-Mr6MWYviKesRhvDX9mf04THdEuue_udcPPvmny-btvqPa-bt131XOeWaTnlWAIvtfVCaMq14EzgjEdplUKHXmunsStBOG166gC967yT3oCTyLDka3J32R0Q8XCKw9HG88HM_4Ab_gvRk0qc
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICSE43902.2021.00038
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 311
ExternalDocumentID 9402039
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation
  funderid: 10.13039/501100001321
GroupedDBID -~X
.4S
.DC
123
23M
29O
5VS
6IE
6IF
6IH
6IK
6IL
6IM
6IN
8US
AAJGR
AAWTH
ABLEC
ADZIZ
AFFNX
ALMA_UNASSIGNED_HOLDINGS
APO
ARCSS
AVWKF
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
EDO
FEDTE
I-F
I07
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
XOL
ID FETCH-LOGICAL-a285t-e70378ac4481384324e384ce5a66ebec88b8ed704b89f1b0ecbdcb5c90b5e2e73
IEDL.DBID RIE
ISBN 1665402962
9781665402965
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684601800025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1558-1225
IngestDate Wed Aug 27 02:50:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a285t-e70378ac4481384324e384ce5a66ebec88b8ed704b89f1b0ecbdcb5c90b5e2e73
PageCount 12
ParticipantIDs ieee_primary_9402039
PublicationCentury 2000
PublicationDate 2021-May
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-May
PublicationDecade 2020
PublicationTitle Proceedings / International Conference on Software Engineering
PublicationTitleAbbrev ICSE
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib044791064
ssj0006499
Score 2.4896924
Snippet Recently, there has been a significant growth of interest in applying software engineering techniques for the quality assurance of deep learning (DL) systems....
SourceID ieee
SourceType Publisher
StartPage 300
SubjectTerms Benchmark testing
Convergence
Deep learning
Measurement
Robots
Robustness
Software engineering
Title RobOT: Robustness-Oriented Testing for Deep Learning Systems
URI https://ieeexplore.ieee.org/document/9402039
WOSCitedRecordID wos000684601800025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0A8eAJFYzf6cGjC9vuR1vjDSF6AaKYcCNtd5Z4AQKLv9-2FIyJF0_d7Wkz_Zh52773AO4LnpeMljKSsWEWoBRJJHPJI5oJyo2WTjXOm03w4VBMp3Jcg4cDFwYR_eUz7LhHf5ZfLM3W_SrrSgd2ElmHOud8x9Xaz5005TbxudI_7MJ56r0jbbq0KMlOWkfqck67MZM5C1pP-_cscOpoLLuvvfe-TdKepMVoxx-d_XJe8Yln0PzfJ59A-4fBR8aH3HQKNVycQXNv4UDCim7B09tSjyaPxDbbTeW2vWjklI9tHUomToBjMSe2rCXPiCsStFjnJMict-Fj0J_0XqJgqBApJrIqQru8uVDGQjKaCKfFh7YxmKk8d4MphBZY8DjVQpZUx2h0YXRmZKwzZMiTc2gslgu8AJKkudLCYiGu4rTUiSqpKUVWUqU0K7S6hJYLxmy108yYhThc_d19Dccu2ruLhDfQqNZbvIUj81V9btZ3fqC_AYlFoPc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGG0QTfSECsbf9uDRwdp1a2u8IQQiAtGZcCNt1xEvg8Dw77ctBWPixVO3npavP77vrX3vAXCf0STHKOcBDxU2ACWLAp5wGqCYIaokt6pxzmyCDodsMuHjCnjYcWG01u7ymW7aR3eWn83V2v4qa3ELdiK-B_ZjQjDasLW2s4cQalKfLf79PpwQ5x5pEqbBSWbaWlqX9doNMU-wV3vavseeVYdC3uq33zsmTTuaFkZNd3j2y3vFpZ5u7X8ffQwaPxw-ON5lpxNQ0cUpqG1NHKBf03Xw9DaXo_QRmma9Ku3GF4ys9rGpRGFqJTiKGTSFLXzWegG9GusMeqHzBvjodtJ2L_CWCoHALC4DbRY4ZUIZUIYiZtX4tGmUjkWS2OFkTDKd0ZBIxnMkQ61kpmSseChjjTWNzkC1mBf6HMCIJEIyg4aoCEkuI5EjlbM4R0JInElxAeo2GNPFRjVj6uNw-Xf3HTjspa-D6aA_fLkCRzbym2uF16BaLtf6Bhyor_Jztbx1g_4NH52kPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+International+Conference+on+Software+Engineering&rft.atitle=RobOT%3A+Robustness-Oriented+Testing+for+Deep+Learning+Systems&rft.au=Wang%2C+Jingyi&rft.au=Chen%2C+Jialuo&rft.au=Sun%2C+Youcheng&rft.au=Ma%2C+Xingjun&rft.date=2021-05-01&rft.pub=IEEE&rft.isbn=9781665402965&rft.issn=1558-1225&rft.spage=300&rft.epage=311&rft_id=info:doi/10.1109%2FICSE43902.2021.00038&rft.externalDocID=9402039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-1225&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-1225&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-1225&client=summon