Prioritizing Test Inputs for Deep Neural Networks via Mutation Analysis

Deep Neural Network (DNN) testing is one of the most widely-used ways to guarantee the quality of DNNs. However, labeling test inputs to check the correctness of DNN prediction is very costly, which could largely affect the efficiency of DNN testing, even the whole process of DNN development. To rel...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings / International Conference on Software Engineering s. 397 - 409
Hlavní autoři: Wang, Zan, You, Hanmo, Chen, Junjie, Zhang, Yingyi, Dong, Xuyuan, Zhang, Wenbin
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2021
Témata:
ISBN:1665402962, 9781665402965
ISSN:1558-1225
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Deep Neural Network (DNN) testing is one of the most widely-used ways to guarantee the quality of DNNs. However, labeling test inputs to check the correctness of DNN prediction is very costly, which could largely affect the efficiency of DNN testing, even the whole process of DNN development. To relieve the labeling-cost problem, we propose a novel test input prioritization approach (called PRIMA) for DNNs via intelligent mutation analysis in order to label more bug-revealing test inputs earlier for a limited time, which facilitates to improve the efficiency of DNN testing. PRIMA is based on the key insight: a test input that is able to kill many mutated models and produce different prediction results with many mutated inputs, is more likely to reveal DNN bugs, and thus it should be prioritized higher. After obtaining a number of mutation results from a series of our designed model and input mutation rules for each test input, PRIMA further incorporates learning-to-rank (a kind of supervised machine learning to solve ranking problems) to intelligently combine these mutation results for effective test input prioritization. We conducted an extensive study based on 36 popular subjects by carefully considering their diversity from five dimensions (i.e., different domains of test inputs, different DNN tasks, different network structures, different types of test inputs, and different training scenarios). Our experimental results demonstrate the effectiveness of PRIMA, significantly outperforming the state-of-the-art approaches (with the average improvement of 8.50%~131.01% in terms of prioritization effectiveness). In particular, we have applied PRIMA to the practical autonomous-vehicle testing in a large motor company, and the results on 4 real-world scene-recognition models in autonomous vehicles further confirm the practicability of PRIMA.
AbstractList Deep Neural Network (DNN) testing is one of the most widely-used ways to guarantee the quality of DNNs. However, labeling test inputs to check the correctness of DNN prediction is very costly, which could largely affect the efficiency of DNN testing, even the whole process of DNN development. To relieve the labeling-cost problem, we propose a novel test input prioritization approach (called PRIMA) for DNNs via intelligent mutation analysis in order to label more bug-revealing test inputs earlier for a limited time, which facilitates to improve the efficiency of DNN testing. PRIMA is based on the key insight: a test input that is able to kill many mutated models and produce different prediction results with many mutated inputs, is more likely to reveal DNN bugs, and thus it should be prioritized higher. After obtaining a number of mutation results from a series of our designed model and input mutation rules for each test input, PRIMA further incorporates learning-to-rank (a kind of supervised machine learning to solve ranking problems) to intelligently combine these mutation results for effective test input prioritization. We conducted an extensive study based on 36 popular subjects by carefully considering their diversity from five dimensions (i.e., different domains of test inputs, different DNN tasks, different network structures, different types of test inputs, and different training scenarios). Our experimental results demonstrate the effectiveness of PRIMA, significantly outperforming the state-of-the-art approaches (with the average improvement of 8.50%~131.01% in terms of prioritization effectiveness). In particular, we have applied PRIMA to the practical autonomous-vehicle testing in a large motor company, and the results on 4 real-world scene-recognition models in autonomous vehicles further confirm the practicability of PRIMA.
Author Wang, Zan
Dong, Xuyuan
Zhang, Yingyi
Zhang, Wenbin
You, Hanmo
Chen, Junjie
Author_xml – sequence: 1
  givenname: Zan
  surname: Wang
  fullname: Wang, Zan
  email: wangzan@tju.edu.cn
  organization: Tianjin University, China
– sequence: 2
  givenname: Hanmo
  surname: You
  fullname: You, Hanmo
  email: youhanmo@tju.edu.cn
  organization: Tianjin University, China
– sequence: 3
  givenname: Junjie
  surname: Chen
  fullname: Chen, Junjie
  email: junjiechen@tju.edu.cn
  organization: Tianjin University, China
– sequence: 4
  givenname: Yingyi
  surname: Zhang
  fullname: Zhang, Yingyi
  email: yingyizhang@tju.edu.cn
  organization: Tianjin University, China
– sequence: 5
  givenname: Xuyuan
  surname: Dong
  fullname: Dong, Xuyuan
  email: dongxuyuan@tju.edu.cn
  organization: Tianjin University, China
– sequence: 6
  givenname: Wenbin
  surname: Zhang
  fullname: Zhang, Wenbin
  email: zhangwenbin@tju.edu.cn
  organization: Tianjin University, China
BookMark eNotj91KwzAYQANOcJt7Ar3IC7Tmy1-Ty1HnLMwfcF6PtE0kWNuRpMr29Bb06twcDpwFmvVDbxG6BZIDEH1XlW8bzjShOSUUckIIlxdoAVIKTqiWdIbmIITKgFJxhVYx-ppwXmggks_R9jX4Ifjkz77_wHsbE67645gidkPA99Ye8bMdg-kmpJ8hfEb87Q1-GpNJfujxujfdKfp4jS6d6aJd_XOJ3h82-_Ix271sq3K9ywxVImWt1IXQjZGiKZxsbAOEKmA1SGJ5q2pqaMsca-pCMqUdOJAFV2xyaW2EALZEN39db609HIP_MuF00NPqtMN-AexkTjQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICSE43902.2021.00046
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 409
ExternalDocumentID 9402064
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID -~X
.4S
.DC
123
23M
29O
5VS
6IE
6IF
6IH
6IK
6IL
6IM
6IN
8US
AAJGR
AAWTH
ABLEC
ADZIZ
AFFNX
ALMA_UNASSIGNED_HOLDINGS
APO
ARCSS
AVWKF
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
EDO
FEDTE
I-F
I07
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
XOL
ID FETCH-LOGICAL-a285t-d69759ca65c7f6cec102813b160e4d8b2a2d3f3cb76389f1f1674837f62ba5513
IEDL.DBID RIE
ISBN 1665402962
9781665402965
ISICitedReferencesCount 105
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684601800033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1558-1225
IngestDate Wed Aug 27 02:28:03 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a285t-d69759ca65c7f6cec102813b160e4d8b2a2d3f3cb76389f1f1674837f62ba5513
PageCount 13
ParticipantIDs ieee_primary_9402064
PublicationCentury 2000
PublicationDate 2021-May
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-May
PublicationDecade 2020
PublicationTitle Proceedings / International Conference on Software Engineering
PublicationTitleAbbrev ICSE
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib044791064
ssj0006499
Score 2.5482733
Snippet Deep Neural Network (DNN) testing is one of the most widely-used ways to guarantee the quality of DNNs. However, labeling test inputs to check the correctness...
SourceID ieee
SourceType Publisher
StartPage 397
SubjectTerms Companies
Computer bugs
Deep Learning Testing
Deep Neural Network
Label
Labeling
Mutation
Neural networks
Predictive models
Test Prioritization
Testing
Training
Title Prioritizing Test Inputs for Deep Neural Networks via Mutation Analysis
URI https://ieeexplore.ieee.org/document/9402064
WOSCitedRecordID wos000684601800033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELbaioGpQIugPOSBkdDEdux4Li10oKpEkbpVtmNLlVBa9TXw6zk7SRESC8qQh6wounNyd_F934fQQ6yoYLnLI0eEiZh2ItJU2YgZojWEJ3B7HMQmxGSSzedy2kCPRyyMtTY0n9knfxjW8vOV2ftfZX3pix3OmqgphCixWvXcYUzAnX3qX32FOQvakRAuoUqCSetBXV5pNyaSk4rrqT5PK0xdEsv-ePA-hCAdQFokCWSe_JfySgg8o_b_HvkMdX8QfHh6jE3nqGGLC9SuJRxw9UZ30Mt0s1x5XqMvGIZnECLwuIAxWwzJLH62do09fYf6hF3oF9_iw1Lht325go9rTpMu-hgNZ4PXqNJWiBTJ0l2UcylSaRRPjXDcWOMTjYTqhMeW5ZkmiuTUUaOFT2lc4jxaAYpZx4lWXhTmErWKVWGvEE4d0YJaqIOgtgJnS51RbmGTmuc0i69Rx9tlsS7pMxaVSXp_X75Bp97wZU_hLWrtNnt7h07MYbfcbu6Dz78B06ikuw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1zCvo0dRO_zYOP1rVJmrTPc3PDbQycsLeRpAkMpBv7evDXe5N2E8EX6UM_CKXkpj33NjnnIPQYSipYZrPAEqEDpqwIFJUmYJooBfAEYQ-92YQYDpPJJB1V0NOeC2OM8YvPzLM79HP52Vxv3K-yZuqKHc4O0GHMGIkKttZu9DAm4N4u-S-_w5x590gATKiTYNg6Wpfz2g1Jykmp9rQ7j0tWXRSmzV7rvQ0w7WlaJPJynvyX94qHnk7tfw99iho_HD482qPTGaqY_BzVdiYOuHyn6-h1tJzNnbLRFzTDYwAJ3MuhzQpDOotfjFlgJ-AhP2HnV4yv8HYm8WBTzOHjnapJA3102uNWNyjdFQJJkngdZDwVcaolj7WwXBvtUo2IqoiHhmWJIpJk1FKthEtqbGQdXwHKWcuJks4W5gJV83luLhGOLVGCGqiEoLqCcKcqodzAliqe0SS8QnXXL9NFIaAxLbvk-u_LD-i4Ox70p_3e8O0GnbggFCsMb1F1vdyYO3Skt-vZannv4_8NnXmoAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+International+Conference+on+Software+Engineering&rft.atitle=Prioritizing+Test+Inputs+for+Deep+Neural+Networks+via+Mutation+Analysis&rft.au=Wang%2C+Zan&rft.au=You%2C+Hanmo&rft.au=Chen%2C+Junjie&rft.au=Zhang%2C+Yingyi&rft.date=2021-05-01&rft.pub=IEEE&rft.isbn=9781665402965&rft.issn=1558-1225&rft.spage=397&rft.epage=409&rft_id=info:doi/10.1109%2FICSE43902.2021.00046&rft.externalDocID=9402064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-1225&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-1225&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-1225&client=summon