QUAC-TRNG: High-Throughput True Random Number Generation Using Quadruple Row Activation in Commodity DRAM Chips

True random number generators (TRNG) sample random physical processes to create large amounts of random numbers for various use cases, including security-critical cryptographic primitives, scientific simulations, machine learning applications, and even recreational entertainment. Unfortunately, not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings - International Symposium on Computer Architecture S. 944 - 957
Hauptverfasser: Olgun, Ataberk, Patel, Minesh, Yaglikci, A. Giray, Luo, Haocong, Kim, Jeremie S., Nisa Bostanci, F., Vijaykumar, Nandita, Ergin, Oguz, Mutlu, Onur
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2021
Schlagworte:
ISSN:2575-713X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract True random number generators (TRNG) sample random physical processes to create large amounts of random numbers for various use cases, including security-critical cryptographic primitives, scientific simulations, machine learning applications, and even recreational entertainment. Unfortunately, not every computing system is equipped with dedicated TRNG hardware, limiting the application space and security guarantees for such systems. To open the application space and enable security guarantees for the overwhelming majority of computing systems that do not necessarily have dedicated TRNG hardware (e.g., processing-in-memory systems), we develop QUAC-TRNG, a new high-throughput TRNG that can be fully implemented in commodity DRAM chips, which are key components in most modern systems.QUAC-TRNG exploits the new observation that a carefully-engineered sequence of DRAM commands activates four consecutive DRAM rows in rapid succession. This QUadruple ACtivation (QUAC) causes the bitline sense amplifiers to non-deterministically converge to random values when we activate four rows that store conflicting data because the net deviation in bitline voltage fails to meet reliable sensing margins.We experimentally demonstrate that QUAC reliably generates random values across 136 commodity DDR4 DRAM chips from one major DRAM manufacturer. We describe how to develop an effective TRNG (QUAC-TRNG) based on QUAC. We evaluate the quality of our TRNG using the commonly-used NIST statistical test suite for randomness and find that QUAC-TRNG successfully passes each test. Our experimental evaluations show that QUAC-TRNG reliably generates true random numbers with a throughput of 3.44 Gb/s (per DRAM channel), outperforming the state-of-the-art DRAM-based TRNG by 15.08× and 1.41× for basic and throughput-optimized versions, respectively. We show that QUAC-TRNG utilizes DRAM bandwidth better than the state-of-the-art, achieving up to 2.03× the throughput of a throughput-optimized baseline when scaling bus frequencies to 12 GT/s.
AbstractList True random number generators (TRNG) sample random physical processes to create large amounts of random numbers for various use cases, including security-critical cryptographic primitives, scientific simulations, machine learning applications, and even recreational entertainment. Unfortunately, not every computing system is equipped with dedicated TRNG hardware, limiting the application space and security guarantees for such systems. To open the application space and enable security guarantees for the overwhelming majority of computing systems that do not necessarily have dedicated TRNG hardware (e.g., processing-in-memory systems), we develop QUAC-TRNG, a new high-throughput TRNG that can be fully implemented in commodity DRAM chips, which are key components in most modern systems.QUAC-TRNG exploits the new observation that a carefully-engineered sequence of DRAM commands activates four consecutive DRAM rows in rapid succession. This QUadruple ACtivation (QUAC) causes the bitline sense amplifiers to non-deterministically converge to random values when we activate four rows that store conflicting data because the net deviation in bitline voltage fails to meet reliable sensing margins.We experimentally demonstrate that QUAC reliably generates random values across 136 commodity DDR4 DRAM chips from one major DRAM manufacturer. We describe how to develop an effective TRNG (QUAC-TRNG) based on QUAC. We evaluate the quality of our TRNG using the commonly-used NIST statistical test suite for randomness and find that QUAC-TRNG successfully passes each test. Our experimental evaluations show that QUAC-TRNG reliably generates true random numbers with a throughput of 3.44 Gb/s (per DRAM channel), outperforming the state-of-the-art DRAM-based TRNG by 15.08× and 1.41× for basic and throughput-optimized versions, respectively. We show that QUAC-TRNG utilizes DRAM bandwidth better than the state-of-the-art, achieving up to 2.03× the throughput of a throughput-optimized baseline when scaling bus frequencies to 12 GT/s.
Author Patel, Minesh
Yaglikci, A. Giray
Luo, Haocong
Nisa Bostanci, F.
Kim, Jeremie S.
Ergin, Oguz
Mutlu, Onur
Olgun, Ataberk
Vijaykumar, Nandita
Author_xml – sequence: 1
  givenname: Ataberk
  surname: Olgun
  fullname: Olgun, Ataberk
  organization: ETH Zürich
– sequence: 2
  givenname: Minesh
  surname: Patel
  fullname: Patel, Minesh
  organization: ETH Zürich
– sequence: 3
  givenname: A. Giray
  surname: Yaglikci
  fullname: Yaglikci, A. Giray
  organization: ETH Zürich
– sequence: 4
  givenname: Haocong
  surname: Luo
  fullname: Luo, Haocong
  organization: ETH Zürich
– sequence: 5
  givenname: Jeremie S.
  surname: Kim
  fullname: Kim, Jeremie S.
  organization: ETH Zürich
– sequence: 6
  givenname: F.
  surname: Nisa Bostanci
  fullname: Nisa Bostanci, F.
  organization: ETH Zürich
– sequence: 7
  givenname: Nandita
  surname: Vijaykumar
  fullname: Vijaykumar, Nandita
  organization: ETH Zürich
– sequence: 8
  givenname: Oguz
  surname: Ergin
  fullname: Ergin, Oguz
  organization: TOBB University of Economics and Technology
– sequence: 9
  givenname: Onur
  surname: Mutlu
  fullname: Mutlu, Onur
  organization: ETH Zürich
BookMark eNotj1FPwjAcxKvRREA_gT70Cwz_bdd19W2ZCiSIAUfiGym2YzWsXbpNw7d3Cd7LPdwvl7sxunLeGYQeCEwJAfm4-MgzToHQKQVKpgAg0gs0JknCYzZIXKIR5YJHgrDPGzRu228AIiVPRsivt1keFZvV7AnP7aGKiir4_lA1fYeL0Bu8UU77Gq_6em8Cnhlnguqsd3jbWnfA617p0DfHAfS_OPvq7M85tg7nvq69tt0JP2-yN5xXtmlv0XWpjq25-_cJ2r6-FPk8Wr7PFnm2jBRNeRelinNjSslA8WG1LEEmRDAhYh0rBWVi0uGmYqrkjGqtKOyB7GMtICkNTSiboPtzrzXG7JpgaxVOOxlLKSRnfwc2WnI
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ISCA52012.2021.00078
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1665433337
9781665433334
EISSN 2575-713X
EndPage 957
ExternalDocumentID 9499795
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ZY4
ID FETCH-LOGICAL-a285t-8a55eef930a57139f096173774d4aa0f6e8000a3af532dda20b01b4d706fe2623
IEDL.DBID RIE
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702275600069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:24:06 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a285t-8a55eef930a57139f096173774d4aa0f6e8000a3af532dda20b01b4d706fe2623
PageCount 14
ParticipantIDs ieee_primary_9499795
PublicationCentury 2000
PublicationDate 2021-June
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June
PublicationDecade 2020
PublicationTitle Proceedings - International Symposium on Computer Architecture
PublicationTitleAbbrev ISCA
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0019956
Score 2.4913263
Snippet True random number generators (TRNG) sample random physical processes to create large amounts of random numbers for various use cases, including...
SourceID ieee
SourceType Publisher
StartPage 944
SubjectTerms Bandwidth
DRAM chips
Hardware
Limiting
Machine learning
NIST
Throughput
Title QUAC-TRNG: High-Throughput True Random Number Generation Using Quadruple Row Activation in Commodity DRAM Chips
URI https://ieeexplore.ieee.org/document/9499795
WOSCitedRecordID wos000702275600069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA3b8MGnqZv4TR58NFu_0jS-jepU0DJnhb2NNB9Y0HZsq_59k7SbCL74FkqgcC_hnpuccw8AlyFmJAgNVcpVBAWeq1CmIo6E9FzOlcYkmR2Z_0iSJJrN6KQFrrZaGCmlJZ_JgVnat3xR8spclQ3NIBVCcRu0CQlrrdb2xcAoNBtpnOvQ4cNLPMK6uBmtlecObCn8ZaBi68e4-78_74H-jxAPTrYlZh-0ZHEAuhsnBtgczB4oNTCNUTpN7q6hYW6gtLbf0dtguqwknLJClB8wsf4fsJ41bVICLWUAPldMLKvFu95YfsER33iewbyARkJSCg3W4c109ATjt3yx6oPX8W0a36PGSgExL8JrFDGMpVTUdxjWbSlVxumF-Br7iYAxR4VSA0eH-Uxh3xOCeeZ-NAsEcUIlPQ2RDkGnKAt5BKDGgDLCurFRuhfjktMo8zFVfuYIGgQ0OwY9E7_5op6WMW9Cd_L351OwaxJUk6_OQGetY3IOdvjnOl8tL2yKvwFCQadG
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1zCvo0dYrf5sFHs_UrbePbqM4NtzJnhb2NNB840HZsq_59k7SbCL74FkqgcC_hnpuccw8ANz6mgedrqpQtA-Q5tkSpDBniwrEZkwqTpGZk_iCI43AyIaMauN1oYYQQhnwmWnpp3vJ5zgp9VdbWg1QCgrfAtnbOqtRamzcDrdGsxHG2Rdr9l6iDVXnTaivHbpli-MtCxVSQbuN__94HRz9SPDjaFJkDUBPZIWisvRhgdTSbIFfQNELJOH68g5q7gZLSgEdtg8miEHBMM55_wNg4gMBy2rROCjSkAfhcUL4o5u9qY_4FO2ztegZnGdQikpwruA7vx50hjN5m8-UReO0-JFEPVWYKiDohXqGQYiyEJK5FsWpMidReL4Gr0B_3KLWkLxR0tKhLJXYdzqmjb0hTjweWL4WjQNIxqGd5Jk4AVChQhFi1NlJ1Y0wwEqYuJtJNLU48j6SnoKnjN52X8zKmVejO_v58DXZ7yXAwHfTjp3Owp5NVUrEuQH2l4nMJdtjnarZcXJl0fwMn3qqP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+International+Symposium+on+Computer+Architecture&rft.atitle=QUAC-TRNG%3A+High-Throughput+True+Random+Number+Generation+Using+Quadruple+Row+Activation+in+Commodity+DRAM+Chips&rft.au=Olgun%2C+Ataberk&rft.au=Patel%2C+Minesh&rft.au=Yaglikci%2C+A.+Giray&rft.au=Luo%2C+Haocong&rft.date=2021-06-01&rft.pub=IEEE&rft.eissn=2575-713X&rft.spage=944&rft.epage=957&rft_id=info:doi/10.1109%2FISCA52012.2021.00078&rft.externalDocID=9499795