White-Box Performance-Influence Models: A Profiling and Learning Approach
Many modern software systems are highly configurable, allowing the user to tune them for performance and more. Current performance modeling approaches aim at finding performance-optimal configurations by building performance models in a black-box manner. While these models provide accurate estimates...
Uloženo v:
| Vydáno v: | Proceedings / International Conference on Software Engineering s. 1059 - 1071 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.05.2021
|
| Témata: | |
| ISBN: | 1665402962, 9781665402965 |
| ISSN: | 1558-1225 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Many modern software systems are highly configurable, allowing the user to tune them for performance and more. Current performance modeling approaches aim at finding performance-optimal configurations by building performance models in a black-box manner. While these models provide accurate estimates, they cannot pinpoint causes of observed performance behavior to specific code regions. This does not only hinder system understanding, but it also complicates tracing the influence of configuration options to individual methods. We propose a white-box approach that models configuration-dependent performance behavior at the method level. This allows us to predict the influence of configuration decisions on individual methods, supporting system understanding and performance debugging. The approach consists of two steps: First, we use a coarse-grained profiler and learn performance-influence models for all methods, potentially identifying some methods that are highly configuration-and performance-sensitive, causing inaccurate predictions. Second, we re-measure these methods with a fine-grained profiler and learn more accurate models, at higher cost, though. By means of 9 real-world Java software systems, we demonstrate that our approach can efficiently identify configuration-relevant methods and learn accurate performance-influence models. |
|---|---|
| AbstractList | Many modern software systems are highly configurable, allowing the user to tune them for performance and more. Current performance modeling approaches aim at finding performance-optimal configurations by building performance models in a black-box manner. While these models provide accurate estimates, they cannot pinpoint causes of observed performance behavior to specific code regions. This does not only hinder system understanding, but it also complicates tracing the influence of configuration options to individual methods. We propose a white-box approach that models configuration-dependent performance behavior at the method level. This allows us to predict the influence of configuration decisions on individual methods, supporting system understanding and performance debugging. The approach consists of two steps: First, we use a coarse-grained profiler and learn performance-influence models for all methods, potentially identifying some methods that are highly configuration-and performance-sensitive, causing inaccurate predictions. Second, we re-measure these methods with a fine-grained profiler and learn more accurate models, at higher cost, though. By means of 9 real-world Java software systems, we demonstrate that our approach can efficiently identify configuration-relevant methods and learn accurate performance-influence models. |
| Author | Siegmund, Norbert Weber, Max Apel, Sven |
| Author_xml | – sequence: 1 givenname: Max surname: Weber fullname: Weber, Max organization: Leipzig University, Germany – sequence: 2 givenname: Sven surname: Apel fullname: Apel, Sven organization: Saarland University, Saarland Informatics Campus, Germany – sequence: 3 givenname: Norbert surname: Siegmund fullname: Siegmund, Norbert organization: Leipzig University, Germany |
| BookMark | eNotjs1Kw0AURgesYFv7BLrIC6Te-c1cd7VUDUQsqLgsM9M7NpBOyqSCvr0VXX3nbA7fhI1Sn4ixaw5zzgFv6uXLSkkEMRcg-BwAEM_YhBujFQg0YsTGXGtbciH0BZsNQ-tBqQo5GDVm9fuuPVJ5138Va8qxz3uXApV1it0nnah46rfUDbfFoljnPrZdmz4Kl7ZFQy6nX1kcDrl3YXfJzqPrBpr975S93a9el49l8_xQLxdN6YTVx9LqSgWHAb31MmKMUvvogbiFyjpvXBQUKm9PnwMqGYKPEaVxhnsQvrJyyq7-ui0RbQ653bv8vUEFHCstfwBdS09N |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICSE43902.2021.00099 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 1071 |
| ExternalDocumentID | 9401975 |
| Genre | orig-research |
| GroupedDBID | -~X .4S .DC 123 23M 29O 5VS 6IE 6IF 6IH 6IK 6IL 6IM 6IN 8US AAJGR AAWTH ABLEC ADZIZ AFFNX ALMA_UNASSIGNED_HOLDINGS APO ARCSS AVWKF BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO EDO FEDTE I-F I07 IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS XOL |
| ID | FETCH-LOGICAL-a285t-8574ca9c9b8b3f9ff35bfb0e18078ab6af2ec7b8155c943ccbff936a61b02b783 |
| IEDL.DBID | RIE |
| ISBN | 1665402962 9781665402965 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684601800086&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1558-1225 |
| IngestDate | Wed Aug 27 02:03:33 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a285t-8574ca9c9b8b3f9ff35bfb0e18078ab6af2ec7b8155c943ccbff936a61b02b783 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_9401975 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-May |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-May |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings / International Conference on Software Engineering |
| PublicationTitleAbbrev | ICSE |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib044791064 ssj0006499 |
| Score | 2.3079433 |
| Snippet | Many modern software systems are highly configurable, allowing the user to tune them for performance and more. Current performance modeling approaches aim at... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1059 |
| SubjectTerms | configuration management Debugging Java Predictive models Software engineering Software measurement software product lines Software systems software variability Testing |
| Title | White-Box Performance-Influence Models: A Profiling and Learning Approach |
| URI | https://ieeexplore.ieee.org/document/9401975 |
| WOSCitedRecordID | wos000684601800086&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTgIxFG2AuHCFCsZ3unBpoa-Ztu6QQGRDSNSEHZm-DIkBw8P4-bZlBmLixt20i6a50_bcO9NzDgD3GntmuXXIS6sRzxhGOqQRKFbOPGfW0gInswkxHsvpVE1q4GHPhXHOpctnrhMf0798uzTb-Kmsq0IxoERWB3Uh8h1Xq1o7nIsAfDH1L0_hnCfvyACXoUoKizaSuqLTLqYqp6XWU9XOSk4dwao76r8MAkgnkhYlnZRC_XJeScAzbP5vyiegfWDwwckem05BzS3OQLOycIDljm6BUTLIQ0_Lbzg5UAjQqLIugdEr7WP9CHtxOD-P5HVYLCwsdVnfYa8UJW-Dt-Hgtf-MSncFVFCZbZDMBDeFMkpLzbzynmXaa-xIVKAvdF546ozQMkTQKM6M0d4rlhc50ZhqIdk5aCyWC3cBIFFOe059yIZcrNekwzZ2CeKJ0YJcglaMzOxzJ6AxK4Ny9Xf3NTiOod_dKrwBjc1q627BkfnazNeru_TWfwCScqYD |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1zCvo0dRO_zYOPZkuT9CO-zbGx4hwDJ-xtNGkiA-lkH-LPN8nSDcEX35o8lHB703Nvm3MOAPcCa5qzXCGd5AKxkGIkTBmBbOfMIprnJMPObCIeDpPJhI8q4GHLhVFKucNnqmkv3b_8fC7X9lNZi5tmgMfhHtgPGSN4w9Yqs4ex2ECfLf79ezhizj3SAKbpk0zaWlqX9drFhEfEqz2V49Cz6gLMW2nntWtg2tG0SNB0RdQv7xUHPb3a_xZ9DBo7Dh8cbdHpBFRUcQpqpYkD9Hu6DlJnkYee5t9wtCMRoLQ0L4HWLe1j-Qjb9nZ6ZunrMCty6JVZ32Hby5I3wFuvO-70kfdXQBlJwhVKwpjJjEsuEkE115qGQgusAqtBn4ko00TJWCQmgpIzKqXQmtMoiwKBiYgTegaqxbxQ5wAGXAnNiDb1kLIdW6JwbqfiQAdSxMEFqNvITD83EhpTH5TLv6fvwGF__DKYDtLh8xU4so9hc8bwGlRXi7W6AQfyazVbLm5dBvwAa6GpSg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+International+Conference+on+Software+Engineering&rft.atitle=White-Box+Performance-Influence+Models%3A+A+Profiling+and+Learning+Approach&rft.au=Weber%2C+Max&rft.au=Apel%2C+Sven&rft.au=Siegmund%2C+Norbert&rft.date=2021-05-01&rft.pub=IEEE&rft.isbn=9781665402965&rft.issn=1558-1225&rft.spage=1059&rft.epage=1071&rft_id=info:doi/10.1109%2FICSE43902.2021.00099&rft.externalDocID=9401975 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-1225&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-1225&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-1225&client=summon |

