Fast and Precise On-the-Fly Patch Validation for All
Generate-and-validate (G&V) automated program repair (APR) techniques have been extensively studied during the past decade. Meanwhile, such techniques can be extremely time-consuming due to the manipulation of program code to fabricate a large number of patches and also the repeated test executi...
Gespeichert in:
| Veröffentlicht in: | Proceedings / International Conference on Software Engineering S. 1123 - 1134 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.05.2021
|
| Schlagworte: | |
| ISBN: | 1665402962, 9781665402965 |
| ISSN: | 1558-1225 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Generate-and-validate (G&V) automated program repair (APR) techniques have been extensively studied during the past decade. Meanwhile, such techniques can be extremely time-consuming due to the manipulation of program code to fabricate a large number of patches and also the repeated test executions on patches to identify potential fixes. PraPR, a recentG furthermore, UniAPR addresses the imprecise patch validation issue by resetting the JVM global state via runtime bytecode transformation. We have implemented UniAPR as a publicly available fully automated Maven Plugin. Our study demonstrates for the first time that on-the-fly patch validation can often speed up state-of-the-art source-code-level APR by over an order of magnitude, enabling all existing APR techniques to explore a larger search space to fix more bugs in the near future. Furthermore, our study shows the first empirical evidence that vanilla on-the-fly patch validation can be imprecise/unsound, while UniAPR with JVM reset is able to mitigate such issues with negligible overhead. |
|---|---|
| ISBN: | 1665402962 9781665402965 |
| ISSN: | 1558-1225 |
| DOI: | 10.1109/ICSE43902.2021.00104 |

