Vector Extensions for Decision Support DBMS Acceleration
Database management systems (DBMS) have become an essential tool for industry and research and are often a significant component of data centres. As a result of this criticality, efficient execution of DBMS engines has become an important area of investigation. This work takes a top-down approach to...
Uloženo v:
| Vydáno v: | 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture s. 166 - 176 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.12.2012
|
| Témata: | |
| ISSN: | 1072-4451 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Database management systems (DBMS) have become an essential tool for industry and research and are often a significant component of data centres. As a result of this criticality, efficient execution of DBMS engines has become an important area of investigation. This work takes a top-down approach to accelerating decision support systems (DSS) on x86-64 microprocessors using vector ISA extensions. In the first step, a leading DSS DBMS is analysed for potential data-level parallelism. We discuss why the existing multimedia SIMD extensions (SSE/AVX) are not suitable for capturing this parallelism and propose a complementary instruction set reminiscent of classical vector architectures. The instruction set is implemented using unintrusive modifications to a modern x86-64 micro architecture tailored for DSS DBMS. The ISA and micro architecture are evaluated using a cycle-accurate x86-64 micro architectural simulator coupled with a highly-detailed memory simulator. We have found a single operator is responsible for 41% of total execution time for the TPC-H DSS benchmark. Our results show performance speedups between 1.94x and 4.56x for an implementation of this operator run with our proposed hardware modifications. |
|---|---|
| ISSN: | 1072-4451 |
| DOI: | 10.1109/MICRO.2012.24 |