Crowdsourced Linked Data Question Answering with AQUACOLD

There is a need for Question Answering (QA) to return accurate answers to complex natural language questions over Linked Data, improving the accessibility of Linked Data (LD) search by abstracting the complexity of SPARQL whilst retaining its expressiveness. This work presents AQUACOLD, a LD QA syst...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL) s. 297 - 298
Hlavní autori: Collis, Nicholas, Frommholz, Ingo
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.09.2021
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:There is a need for Question Answering (QA) to return accurate answers to complex natural language questions over Linked Data, improving the accessibility of Linked Data (LD) search by abstracting the complexity of SPARQL whilst retaining its expressiveness. This work presents AQUACOLD, a LD QA system which harnesses the power of crowdsourcing to meet this need.
DOI:10.1109/JCDL52503.2021.00043