Sharing is Caring! Joint Multitask Learning Helps Aspect-Category Extraction and Sentiment Detection in Scientific Peer Reviews

The peer-review process is the benchmark of research validation. Peer-reviewed texts are the artifacts via which the editors/chairs decide the inclusion/exclusion of a paper in a journal or conference proceedings. Hence it is important for the editors/chairs to carefully analyze the peer-review text...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL) s. 270 - 273
Hlavní autoři: Kumar, Sandeep, Ghosal, Tirthankar, Bharti, Prabhat Kumar, Ekbal, Asif
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.09.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The peer-review process is the benchmark of research validation. Peer-reviewed texts are the artifacts via which the editors/chairs decide the inclusion/exclusion of a paper in a journal or conference proceedings. Hence it is important for the editors/chairs to carefully analyze the peer-review text from various aspects of the paper (e.g., novelty, substance, soundness, etc.), identify the underlying sentiment of the reviewers, and thereby validate the informativeness of the reviews before making a decision. With the rise in research paper submissions, the current peer-review system is experiencing an unprecedented information overload. Sometimes it becomes stressful for the chairs/editors to make a reasonable decision within the stringent timelines. Here in this work, we attempt an interesting problem to automatically extract the aspect and sentiment from the peer-review texts. We design an end-to-end deep multitask learning model to perform aspect extraction and sentiment classification simultaneously. We show that both these tasks help each other in the predictions. We achieve encouraging performance on a recently released dataset of peer-review texts. We make our codes available for further research 1 1 https://www.iitp.ac.in/~ai-nlp-ml/resources.html#aspect-category-sentiment.
AbstractList The peer-review process is the benchmark of research validation. Peer-reviewed texts are the artifacts via which the editors/chairs decide the inclusion/exclusion of a paper in a journal or conference proceedings. Hence it is important for the editors/chairs to carefully analyze the peer-review text from various aspects of the paper (e.g., novelty, substance, soundness, etc.), identify the underlying sentiment of the reviewers, and thereby validate the informativeness of the reviews before making a decision. With the rise in research paper submissions, the current peer-review system is experiencing an unprecedented information overload. Sometimes it becomes stressful for the chairs/editors to make a reasonable decision within the stringent timelines. Here in this work, we attempt an interesting problem to automatically extract the aspect and sentiment from the peer-review texts. We design an end-to-end deep multitask learning model to perform aspect extraction and sentiment classification simultaneously. We show that both these tasks help each other in the predictions. We achieve encouraging performance on a recently released dataset of peer-review texts. We make our codes available for further research 1 1 https://www.iitp.ac.in/~ai-nlp-ml/resources.html#aspect-category-sentiment.
Author Kumar, Sandeep
Ekbal, Asif
Bharti, Prabhat Kumar
Ghosal, Tirthankar
Author_xml – sequence: 1
  givenname: Sandeep
  surname: Kumar
  fullname: Kumar, Sandeep
  email: sandeep_2121cs29@iitp.ac.in
  organization: IIT Patna,CSE Department,India
– sequence: 2
  givenname: Tirthankar
  surname: Ghosal
  fullname: Ghosal, Tirthankar
  email: ghosal@ufal.mff.cuni.cz
  organization: UFAL, MFF Charles University,CZ
– sequence: 3
  givenname: Prabhat Kumar
  surname: Bharti
  fullname: Bharti, Prabhat Kumar
  email: prabhat_1921cs32@iitp.ac.in
  organization: IIT Patna,CSE Department,India
– sequence: 4
  givenname: Asif
  surname: Ekbal
  fullname: Ekbal, Asif
  email: asif@iitp.ac.in
  organization: IIT Patna,CSE Department,India
BookMark eNotUM1OAjEYrIkmKvIEeqgPsNgf2m6PZEGRrNGInkm3_RYboUva-sPJVxfEy8xkZjKHOUfHoQuA0BUlA0qJvplV41owQfiAEUYHhJCSHqG-ViWVUgypUkSfon5KviFCMSEJ12foZ_5mog9L7BOu_tQ1nnU-ZPzwsco-m_SOazAx7DtTWG0SHqUN2FxUJsOyi1s8-c7R2Oy7gE1weA4h-_UO8BgyHHwf8Nz6fdB6i58AIn6GTw9f6QKdtGaVoP_PPfR6O3mppkX9eHdfjerCsFLkgisjwRDXmIaDACdFCayUrnHCCOe4lLYV0gJRFpqhHoKksmVWMgqt1arhPXR52PUAsNhEvzZxu9BS0N0__BeHX2Lz
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/JCDL52503.2021.00081
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665417709
1665417706
EndPage 273
ExternalDocumentID 9651781
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
LHSKQ
RIE
RIL
ID FETCH-LOGICAL-a285t-37a6ea0dbab3e5ed658e286dbd5a5dd366cf56ce07ceb494e616f2c621efc97b3
IEDL.DBID RIE
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000760315700035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:33:24 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a285t-37a6ea0dbab3e5ed658e286dbd5a5dd366cf56ce07ceb494e616f2c621efc97b3
PageCount 4
ParticipantIDs ieee_primary_9651781
PublicationCentury 2000
PublicationDate 2021-Sept.
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-Sept.
PublicationDecade 2020
PublicationTitle 2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)
PublicationTitleAbbrev JCDL
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib057256039
Score 1.8691658
Snippet The peer-review process is the benchmark of research validation. Peer-reviewed texts are the artifacts via which the editors/chairs decide the...
SourceID ieee
SourceType Publisher
StartPage 270
SubjectTerms aspect extraction
Benchmark testing
Codes
deep learning
Libraries
peer review
sentiment analysis
Task analysis
text classification
Title Sharing is Caring! Joint Multitask Learning Helps Aspect-Category Extraction and Sentiment Detection in Scientific Peer Reviews
URI https://ieeexplore.ieee.org/document/9651781
WOSCitedRecordID wos000760315700035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMfDHB48qWzibyJ4tFt_pPlxlLohY4yBP9htpMmLFKEbbSd68l-3SetE8OItySUhL8k37XufF4SuU2ZABFx6qfG1R4hQFlYmnhGRAhYJGTpu7XnKZjO-WIh5B91sWRgAcMFnMLBF58vXK7Wxv8qGgsYBs5z1DmO0YbW-107MrHZHoqXjAl8MJ8nd1DrtovorMAwGTv1-vaHiJGS8_7_OD1D_h8XD863KHKIO5D30afMs11WclThxpSs8WWV5hRugVpavuM2c-oJrZVmX-NYxlV5iM0Osig88eq-KBmrAMtf4wUYN2RHgO6igac9y7La-CyfCc4ACN66Eso-exqPH5N5rn1LwZMjjqj5GJAXp61SmEcSg63sHhJzqVMcy1jqiVJmYKvCZgpQIAjSgJlQ0DMAowdLoCHXzVQ7HCAPhVPnaZ0woEgguwRAuaW0Cngpi1Anq2clbrptsGct23k7_bj5De9Y6TdTWOepWxQYu0K56q7KyuHQm_gKBHqsW
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMfDmIKeVDbxtxE82q0_0qQ5yn4wZx0Dp-w20uRVitCNthM9-a_bpHUiePGW5JKQl-Sb9r3PC0LXEYuBO4GwothWFiFcaliZWDH3JDCPC9dwa88hm0yC-ZxPG-hmw8IAgAk-g44uGl--Wsq1_lXW5dR3mOast3xCXLuitb5Xj8-0enu85uMcm3fHvX6o3XZe-R3oOh2jf79eUTEiMtz7X_f7qP1D4-HpRmcOUAPSFvrUmZbLKk5y3DOlKzxeJmmBK6RW5K-4zp36gkttWeX41lCVVk_nhlhmH3jwXmQV1oBFqvCjjhvSI8B9KKBqT1JsNr8JKMJTgAxXzoS8jZ6Gg1lvZNWPKVjCDfyiPEgEBWGrSEQe-KDKmwe4AVWR8oWvlEepjH0qwWYSIsIJUIfGrqSuA7HkLPIOUTNdpnCEMJCASlvZjHFJHB4IiEkgaGmCIOIklseopSdvsaryZSzqeTv5u_kS7YxmD-EivJvcn6JdbakqhusMNYtsDedoW74VSZ5dGHN_AZBwrl0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+ACM%2FIEEE+Joint+Conference+on+Digital+Libraries+%28JCDL%29&rft.atitle=Sharing+is+Caring%21+Joint+Multitask+Learning+Helps+Aspect-Category+Extraction+and+Sentiment+Detection+in+Scientific+Peer+Reviews&rft.au=Kumar%2C+Sandeep&rft.au=Ghosal%2C+Tirthankar&rft.au=Bharti%2C+Prabhat+Kumar&rft.au=Ekbal%2C+Asif&rft.date=2021-09-01&rft.pub=IEEE&rft.spage=270&rft.epage=273&rft_id=info:doi/10.1109%2FJCDL52503.2021.00081&rft.externalDocID=9651781