GraphConfRec: A Graph Neural Network-Based Conference Recommender System
In today's academic publishing model, especially in Computer Science, conferences commonly constitute the main platforms for releasing the latest peer-reviewed advancements in their respective fields. However, choosing a suitable academic venue for publishing one's research can represent a...
Uloženo v:
| Vydáno v: | 2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL) s. 90 - 99 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.09.2021
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In today's academic publishing model, especially in Computer Science, conferences commonly constitute the main platforms for releasing the latest peer-reviewed advancements in their respective fields. However, choosing a suitable academic venue for publishing one's research can represent a challenging task considering the plethora of available conferences, particularly for those at the start of their academic careers, or for those seeking to publish outside of their usual domain. In this paper, we propose GraphConfRec, a conference recommender system which combines SciGraph and graph neural networks, to infer suggestions based not only on title and abstract, but also on coauthorship and citation relationships. GraphConfRec achieves a recall@10 of up to 0.580 and a MAP of up to 0.336 with a graph attention network-based recommendation model. A user study with 25 subjects supports the positive results. |
|---|---|
| AbstractList | In today's academic publishing model, especially in Computer Science, conferences commonly constitute the main platforms for releasing the latest peer-reviewed advancements in their respective fields. However, choosing a suitable academic venue for publishing one's research can represent a challenging task considering the plethora of available conferences, particularly for those at the start of their academic careers, or for those seeking to publish outside of their usual domain. In this paper, we propose GraphConfRec, a conference recommender system which combines SciGraph and graph neural networks, to infer suggestions based not only on title and abstract, but also on coauthorship and citation relationships. GraphConfRec achieves a recall@10 of up to 0.580 and a MAP of up to 0.336 with a graph attention network-based recommendation model. A user study with 25 subjects supports the positive results. |
| Author | Iana, Andreea Paulheim, Heiko |
| Author_xml | – sequence: 1 givenname: Andreea surname: Iana fullname: Iana, Andreea email: andreea@informatik.uni-mannheim.de organization: University of Mannheim,Data and Web Science Group,Mannheim,Germany – sequence: 2 givenname: Heiko surname: Paulheim fullname: Paulheim, Heiko email: heiko@informatik.uni-mannheim.de organization: University of Mannheim,Data and Web Science Group,Mannheim,Germany |
| BookMark | eNotjt1KxDAUhCMoqGufQC_yAq3nJE3SeLdW3VWKgj_XS5qeYnHbLmlF9u2NPzfzMcwwzCk7HMaBGLtAyBDBXj6UN5USCmQmQGAGEPWAJdYUqLXK0RiwxyyZpq4GZYTSIO0JW6-C272X49A-k7_iS_7r-SN9BreNmL_G8JFeu4ka_tOiQIMnHstj39PQUOAv-2mm_owdtW47UfLPBXu7u30t12n1tLovl1XqRKHmVGqDJCTEW8YhgM9di0a1Nao8N1pQbuLT1qvagEcrBDRNDLxTxlIhvFyw87_djog2u9D1Luw3VissikJ-A90NS8Y |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/JCDL52503.2021.00021 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665417709 1665417706 |
| EndPage | 99 |
| ExternalDocumentID | 9651888 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK LHSKQ RIE RIL |
| ID | FETCH-LOGICAL-a285t-3671e2309787a100c4af175fb1544762e47177fc5b70c19220dd447ca579e82c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000760315700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:33:08 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a285t-3671e2309787a100c4af175fb1544762e47177fc5b70c19220dd447ca579e82c3 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_9651888 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Sept. |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-Sept. |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL) |
| PublicationTitleAbbrev | JCDL |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib057256039 |
| Score | 1.8326098 |
| Snippet | In today's academic publishing model, especially in Computer Science, conferences commonly constitute the main platforms for releasing the latest peer-reviewed... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 90 |
| SubjectTerms | Data models Graph Neural Network Graph neural networks Internet Libraries Measurement Publishing Recommender System Scientific Publications SciGraph Semantics |
| Title | GraphConfRec: A Graph Neural Network-Based Conference Recommender System |
| URI | https://ieeexplore.ieee.org/document/9651888 |
| WOSCitedRecordID | wos000760315700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELXaioEJUIv4VgZGTP2R1DYbFEqFUNUBpG6V7dgSEm1RSfn93DmldGBhcuxEsXSO8u7Zd-8IueSudMyEguoocppbF6gFKKAsimByGXUu62ITajTSk4kZN8jVJhcmhJCCz8I1Xqaz_HLhV7hV1jU9lA_TTdJUStW5Wj_fTqEQu6VZZ8dxZrpP_ftnPLSTwAIFR6FCFATdqqGSIGSw97_J90nnNxcvG29Q5oA0wrxNho-oM41PgNt3k91mqZ-h0oZ9hyaFdtM7QKgy23oPcs3ZLBWPy2qp8g55HTy89Id0XROBWqGLisqe4gFoA5A_ZTljPrcRPIDoUFUHfmwBwEap6AunmAfvTbCyhBveFsoELbw8JK35Yh6OSMYlrIcHs6nktgG3kUVgUQslnOLOHJM2WmH6UcteTNcGOPl7-JTsopnr8Ksz0qqWq3BOdvxX9fa5vEhr9Q3vqZLl |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0gmuhJDRi_7cGjlX5s6dabooiKhAMm3Mhut01MBAyCv99pF9GDF0_ddjfbZLrZN6-deQNwzvMiZ8YpmnqR0CTLHc0QCijzwplE-jSRZbEJ3eulw6HpV-BilQvjnIvBZ-4yXMaz_GJqF2GrrGGaQT4sXYN1lSSCl9la31-P0gG9pVnmx3FmGo-t2244tpPIAwUPUoVBEvRXFZUIIu3t_02_A_WfbDzSX-HMLlTcpAad-6A0HZ5Ax--KXJPYJ0FrI3vDJgZ30xvEqIL8ek9gm-NxLB9HSrHyOry07watDl1WRaCZSNWcyqbmDokD0j-dccZsknn0AXwedHXw1-YQbrT2VuWaWfTfBCsKvGEzpY1LhZV7UJ1MJ24fCJe4IhbNpqPjhuxGKsd8KrTINc_NAdSCFUbvpfDFaGmAw7-Hz2CzM3jujroPvacj2AomL4OxjqE6ny3cCWzYz_nrx-w0rtsXyIWWLA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+ACM%2FIEEE+Joint+Conference+on+Digital+Libraries+%28JCDL%29&rft.atitle=GraphConfRec%3A+A+Graph+Neural+Network-Based+Conference+Recommender+System&rft.au=Iana%2C+Andreea&rft.au=Paulheim%2C+Heiko&rft.date=2021-09-01&rft.pub=IEEE&rft.spage=90&rft.epage=99&rft_id=info:doi/10.1109%2FJCDL52503.2021.00021&rft.externalDocID=9651888 |