MLPerf Inference Benchmark

Machine-learning (ML) hardware and software system demand is burgeoning. Driven by ML applications, the number of different ML inference systems has exploded. Over 100 organizations are building ML inference chips, and the systems that incorporate existing models span at least three orders of magnit...

Full description

Saved in:
Bibliographic Details
Published in:2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA) pp. 446 - 459
Main Authors: Reddi, Vijay Janapa, Cheng, Christine, Kanter, David, Mattson, Peter, Schmuelling, Guenther, Wu, Carole-Jean, Anderson, Brian, Breughe, Maximilien, Charlebois, Mark, Chou, William, Chukka, Ramesh, Coleman, Cody, Davis, Sam, Deng, Pan, Diamos, Greg, Duke, Jared, Fick, Dave, Gardner, J. Scott, Hubara, Itay, Idgunji, Sachin, Jablin, Thomas B., Jiao, Jeff, John, Tom St, Kanwar, Pankaj, Lee, David, Liao, Jeffery, Lokhmotov, Anton, Massa, Francisco, Meng, Peng, Micikevicius, Paulius, Osborne, Colin, Pekhimenko, Gennady, Rajan, Arun Tejusve Raghunath, Sequeira, Dilip, Sirasao, Ashish, Sun, Fei, Tang, Hanlin, Thomson, Michael, Wei, Frank, Wu, Ephrem, Xu, Lingjie, Yamada, Koichi, Yu, Bing, Yuan, George, Zhong, Aaron, Zhang, Peizhao, Zhou, Yuchen
Format: Conference Proceeding
Language:English
Published: IEEE 01.05.2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first