Fine-Grained In-Context Permission Classification for Android Apps Using Control-Flow Graph Embedding

Android is the most popular operating system for mobile devices nowadays. Permissions are a very important part of Android security architecture. Apps frequently need the users' permission, but many of them only ask for it once-when the user uses the app for the first time-and then they keep an...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE/ACM International Conference on Automated Software Engineering : [proceedings] s. 1225 - 1237
Hlavní autori: Malviya, Vikas K., Tun, Yan Naing, Leow, Chee Wei, Xynyn, Ailys Tee, Shar, Lwin Khin, Jiang, Lingxiao
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 11.09.2023
Predmet:
ISSN:2643-1572
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Android is the most popular operating system for mobile devices nowadays. Permissions are a very important part of Android security architecture. Apps frequently need the users' permission, but many of them only ask for it once-when the user uses the app for the first time-and then they keep and abuse the given permissions. Longing to enhance Android permission security and users' private data protection is the driving factor behind our approach to explore fine-grained context-sensitive permission usage analysis and thereby identify misuses in Android apps. In this work, we propose an approach for classifying the fine-grained permission uses for each functionality of Android apps that a user interacts with. Our approach, named DroidGem, relies on mainly three technical components to provide an in-context classification for permission (mis)uses by Android apps for each functionality triggered by users: (1) static inter-procedural control-flow graphs and call graphs representing each functionality in an app that may be triggered by users' or systems' events through UI-linked event handlers, (2) graph embedding techniques converting graph structures into numerical encoding, and (3) supervised machine learning models classifying (mis)uses of permissions based on the embedding. We have implemented a prototype of DroidGem and evaluated it on 89 diverse apps. The results show that DroidGem can accurately classify whether permission used by the functionality of an app triggered by a UI-linked event handler is a misuse in relation to manually verified decisions, with up to 95% precision and recall. We believe that such a permission classification mechanism can be helpful in providing fine-grained permission notices in a context related to app users' actions, and improving their awareness of (mis)uses of permissions and private data in Android apps.
AbstractList Android is the most popular operating system for mobile devices nowadays. Permissions are a very important part of Android security architecture. Apps frequently need the users' permission, but many of them only ask for it once-when the user uses the app for the first time-and then they keep and abuse the given permissions. Longing to enhance Android permission security and users' private data protection is the driving factor behind our approach to explore fine-grained context-sensitive permission usage analysis and thereby identify misuses in Android apps. In this work, we propose an approach for classifying the fine-grained permission uses for each functionality of Android apps that a user interacts with. Our approach, named DroidGem, relies on mainly three technical components to provide an in-context classification for permission (mis)uses by Android apps for each functionality triggered by users: (1) static inter-procedural control-flow graphs and call graphs representing each functionality in an app that may be triggered by users' or systems' events through UI-linked event handlers, (2) graph embedding techniques converting graph structures into numerical encoding, and (3) supervised machine learning models classifying (mis)uses of permissions based on the embedding. We have implemented a prototype of DroidGem and evaluated it on 89 diverse apps. The results show that DroidGem can accurately classify whether permission used by the functionality of an app triggered by a UI-linked event handler is a misuse in relation to manually verified decisions, with up to 95% precision and recall. We believe that such a permission classification mechanism can be helpful in providing fine-grained permission notices in a context related to app users' actions, and improving their awareness of (mis)uses of permissions and private data in Android apps.
Author Malviya, Vikas K.
Shar, Lwin Khin
Jiang, Lingxiao
Tun, Yan Naing
Xynyn, Ailys Tee
Leow, Chee Wei
Author_xml – sequence: 1
  givenname: Vikas K.
  surname: Malviya
  fullname: Malviya, Vikas K.
  email: vikasm@smu.edu.sg
  organization: Singapore Management University,Singapore
– sequence: 2
  givenname: Yan Naing
  surname: Tun
  fullname: Tun, Yan Naing
  email: yannaingtun@smu.edu.sg
  organization: Singapore Management University,Singapore
– sequence: 3
  givenname: Chee Wei
  surname: Leow
  fullname: Leow, Chee Wei
  email: cwleow@smu.edu.sg
  organization: Singapore Management University,Singapore
– sequence: 4
  givenname: Ailys Tee
  surname: Xynyn
  fullname: Xynyn, Ailys Tee
  email: ailystee.2020@scis.smu.edu.sg
  organization: Singapore Management University,Singapore
– sequence: 5
  givenname: Lwin Khin
  surname: Shar
  fullname: Shar, Lwin Khin
  email: lkshar@smu.edu.sg
  organization: Singapore Management University,Singapore
– sequence: 6
  givenname: Lingxiao
  surname: Jiang
  fullname: Jiang, Lingxiao
  email: lxjiang@smu.edu.sg
  organization: Singapore Management University,Singapore
BookMark eNotUMtKAzEAjKJgW_sFesgPpOa12c1xWdpaKChozyWbh0a2yZIsqH9vij3NDPM4zBzchBgsAA8ErwjB8ql9W1eCUrmimLIVxrgSV2Apa9mwCjMqpeDXYEYFZ4hUNb0D85y_SqqIegbsxgeLtkkVMHAXUBfDZH8m-GrTyefsY4DdoApxXqvpLF1MsA0mRW9gO44ZHrIPH_BcTHFAmyF-wzI4fsL1qbfGFPMe3Do1ZLu84AIcNuv37hntX7a7rt0jRRs-Icu55krpWlrBDDHYKS173RPFDK6oqbmTjbPYOCmY6qnATDuHFVHaWepqtgCP_7veWnsckz-p9HskmJYzaMP-AD1OWnQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ASE56229.2023.00056
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350329964
EISSN 2643-1572
EndPage 1237
ExternalDocumentID 10298328
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation, Singapore
  funderid: 10.13039/501100001381
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
6J9
AAJGR
AAWTH
ABLEC
ACREN
ADYOE
ADZIZ
AFYQB
ALMA_UNASSIGNED_HOLDINGS
AMTXH
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-a284t-e44c4aac79e63d1d0fac9bcb1a3d052d74f98fe0df963ab2603cff0a1acfe2f73
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001103357200098&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:32:41 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a284t-e44c4aac79e63d1d0fac9bcb1a3d052d74f98fe0df963ab2603cff0a1acfe2f73
PageCount 13
ParticipantIDs ieee_primary_10298328
PublicationCentury 2000
PublicationDate 2023-Sept.-11
PublicationDateYYYYMMDD 2023-09-11
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-11
  day: 11
PublicationDecade 2020
PublicationTitle IEEE/ACM International Conference on Automated Software Engineering : [proceedings]
PublicationTitleAbbrev ASE
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0051577
ssib057256115
Score 2.25843
Snippet Android is the most popular operating system for mobile devices nowadays. Permissions are a very important part of Android security architecture. Apps...
SourceID ieee
SourceType Publisher
StartPage 1225
SubjectTerms Android apps
Classification
Control flow graphs
Data protection
Encoding
Graph embedding
Machine learning
Mobile handsets
Operating systems
Permission control
Privacy
Privacy protection
Prototypes
Title Fine-Grained In-Context Permission Classification for Android Apps Using Control-Flow Graph Embedding
URI https://ieeexplore.ieee.org/document/10298328
WOSCitedRecordID wos001103357200098&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYmAqH0V8ywOrwU6cuB5R1RSWqhIgdasc-yxVghS1KfDz8TlpYWFgi6xIiXw-vbP93j1CbvLcGi9NxpwSmsncOlZyBQxyk9pM2VSZxmxCjcf96VRPWrF61MIAQCSfwS0-xrt8t7BrPCoLGZ7osAL7u2RXqbwRa20WT6YCeAuxrX0DTivVthkSXN_dPw0D1CeoTUmwqSlHy-pfhioRT4ruP__kgPR-lHl0ssWcQ7ID1RHpbqwZaJupxwSKUD2yEfo_gKOPFYtdqL5qOkHyCzJfKxr9MJEpFINDQ_VKkd64mDsaatMVjWwCOmi47Kx4XXzSEba3psO3Ehx-v0deiuHz4IG1jgrMBBiqGUhppTFWachTJxz3xurSlsKkjmeJU9LrvgfufMhLU4a9Tmq950YY6yHxKj0hnWpRwSmhEk8hbdjMpbaU4R0da0UDHmwOPONnpIfTNntvmmbMNjN2_sf4BdnHyCAVQ4hL0qmXa7gie_ajnq-W1zHU33Y8qyg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46BT3NHxN_m4PXaNKmzXqUsW7DOQZO2G2kyQsMtJWtU_98k7SbXjx4K6HQkpfH95J83_sQuo1jJQ2XEdGCJYTHSpOMCiAQy1BFQoVCVmYTYjRqT6fJuBarey0MAHjyGdy5R3-Xrwu1ckdlNsODxK7A9jbaiTgPaCXXWi-fSFj4ZmxT_VqkFqJuNMRocv_w3LVgHzh1SuDamlJnWv3LUsUjStr8578coNaPNg-PN6hziLYgP0LNtTkDrnP1GEFq60fScw4QoPEgJ74P1VeJx47-4rivOfaOmI4r5MODbf2KHcGxmGtsq9Ml9nwC3KnY7CR9LT5xzzW4xt23DLT7fgu9pN1Jp09qTwUiLRCVBDhXXEolEohDzTQ1UiWZypgMNY0CLbhJ2gaoNjYzZWZ3O6EyhkomlYHAiPAENfIih1OEuTuHVHY7F6qM23cSXy1KMKBioBE9Qy03bbP3qm3GbD1j53-M36C9_uRpOBsORo8XaN9FyREzGLtEjXKxgiu0qz7K-XJx7cP-DYoqrm8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FACM+International+Conference+on+Automated+Software+Engineering+%3A+%5Bproceedings%5D&rft.atitle=Fine-Grained+In-Context+Permission+Classification+for+Android+Apps+Using+Control-Flow+Graph+Embedding&rft.au=Malviya%2C+Vikas+K.&rft.au=Tun%2C+Yan+Naing&rft.au=Leow%2C+Chee+Wei&rft.au=Xynyn%2C+Ailys+Tee&rft.date=2023-09-11&rft.pub=IEEE&rft.eissn=2643-1572&rft.spage=1225&rft.epage=1237&rft_id=info:doi/10.1109%2FASE56229.2023.00056&rft.externalDocID=10298328