VALAR: Streamlining Alarm Ranking in Static Analysis with Value-Flow Assisted Active Learning

Static analyzers play a critical role in program defects and security vulnerabilities detection. Despite their importance, the widespread adoption of static analysis techniques in industrial development faces numerous obstacles, among which the high rate of false alarms constitutes a significant one...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM International Conference on Automated Software Engineering : [proceedings] S. 1940 - 1951
Hauptverfasser: Liu, Pengcheng, Lu, Yifei, Yang, Wenhua, Pan, Minxue
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 11.09.2023
Schlagworte:
ISSN:2643-1572
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Static analyzers play a critical role in program defects and security vulnerabilities detection. Despite their importance, the widespread adoption of static analysis techniques in industrial development faces numerous obstacles, among which the high rate of false alarms constitutes a significant one. To address this issue, we propose a novel approach called Valar, which performs alarm ranking for advanced value-flow analysis using the active learning technique. Active learning algorithms minimize the manual effort for alarm inspection by maximizing the effect of each user labeling in recognizing true/false alarms. Meanwhile, the value-flows provide Valar with a concise and comprehensive summary of the operational semantics about programs. Based on this, Valar is able to reason about the potential correlations between alarms and prioritize the most profitable unlabeled alarm. Additionally, the accuracy of Valar increases as more user labels are given and Valar's active learning model is further refined. We evaluate Valar on 20 real-world C/C++ programs using three value-flow based checkers. Our experimental results demonstrated that Valar significantly lowers the priorities of false alarms with most true alarms ranked high. Notably, Valar ranked all true alarms in the top 47% in 90% projects and ranked 90% true alarms in the top 22% in 75% projects. Furthermore, Valar has no requirement for pretraining and has a negligible computation time of less than 0.1s for each alarm prioritization.
AbstractList Static analyzers play a critical role in program defects and security vulnerabilities detection. Despite their importance, the widespread adoption of static analysis techniques in industrial development faces numerous obstacles, among which the high rate of false alarms constitutes a significant one. To address this issue, we propose a novel approach called Valar, which performs alarm ranking for advanced value-flow analysis using the active learning technique. Active learning algorithms minimize the manual effort for alarm inspection by maximizing the effect of each user labeling in recognizing true/false alarms. Meanwhile, the value-flows provide Valar with a concise and comprehensive summary of the operational semantics about programs. Based on this, Valar is able to reason about the potential correlations between alarms and prioritize the most profitable unlabeled alarm. Additionally, the accuracy of Valar increases as more user labels are given and Valar's active learning model is further refined. We evaluate Valar on 20 real-world C/C++ programs using three value-flow based checkers. Our experimental results demonstrated that Valar significantly lowers the priorities of false alarms with most true alarms ranked high. Notably, Valar ranked all true alarms in the top 47% in 90% projects and ranked 90% true alarms in the top 22% in 75% projects. Furthermore, Valar has no requirement for pretraining and has a negligible computation time of less than 0.1s for each alarm prioritization.
Author Pan, Minxue
Lu, Yifei
Yang, Wenhua
Liu, Pengcheng
Author_xml – sequence: 1
  givenname: Pengcheng
  surname: Liu
  fullname: Liu, Pengcheng
  email: mg21320010@smail.nju.edu.cn
  organization: Software Institute, Nanjing University,State Key Laboratory for Novel Software Technology,China
– sequence: 2
  givenname: Yifei
  surname: Lu
  fullname: Lu, Yifei
  email: lyf@smail.nju.edu.cn
  organization: Software Institute, Nanjing University,State Key Laboratory for Novel Software Technology,China
– sequence: 3
  givenname: Wenhua
  surname: Yang
  fullname: Yang, Wenhua
  email: ywh@nuaa.edu.cn
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,China
– sequence: 4
  givenname: Minxue
  surname: Pan
  fullname: Pan, Minxue
  email: mxp@nju.edu.cn
  organization: Software Institute, Nanjing University,State Key Laboratory for Novel Software Technology,China
BookMark eNotjF1LwzAYRqMouM39Ar3IH-jMm48m8S6MTYWCsOnuZLxtEo12nbR1Y__eDb16OM-BMyQXzbYJhNwAmwAwe-eWM5VzbieccTFhjFlzRsZWWyMUE9zaXJ6TAc-lyEBpfkWGXffJmDqCHpC3lSvc4p4u-zbgpk5Nat6pq7Hd0AU2XydKzdFinyrqGqwPXeroPvUfdIX1T8jm9XZPXXd8--Cpq_q0C7QI2J5K1-QyYt2F8f-OyOt89jJ9zIrnh6epKzLkRvZZAKjKiFqIKEvljTCWg4_RI-Sl1BpiBUJ5G0DaEkF7K2OpUPoYQgV5FCNy-9dNIYT1d5s22B7WwLg1ShnxC3EGVn0
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ASE56229.2023.00098
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350329964
EISSN 2643-1572
EndPage 1951
ExternalDocumentID 10298558
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61972193
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
6J9
AAJGR
AAWTH
ABLEC
ACREN
ADYOE
ADZIZ
AFYQB
ALMA_UNASSIGNED_HOLDINGS
AMTXH
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-a284t-e11cbfa733f4b5d838921dffda16b4771fc135d9e149ba17d94fb5a4dfeec16f3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001103357200180&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:32:41 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a284t-e11cbfa733f4b5d838921dffda16b4771fc135d9e149ba17d94fb5a4dfeec16f3
PageCount 12
ParticipantIDs ieee_primary_10298558
PublicationCentury 2000
PublicationDate 2023-Sept.-11
PublicationDateYYYYMMDD 2023-09-11
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-11
  day: 11
PublicationDecade 2020
PublicationTitle IEEE/ACM International Conference on Automated Software Engineering : [proceedings]
PublicationTitleAbbrev ASE
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0051577
ssib057256115
Score 2.2585292
Snippet Static analyzers play a critical role in program defects and security vulnerabilities detection. Despite their importance, the widespread adoption of static...
SourceID ieee
SourceType Publisher
StartPage 1940
SubjectTerms active learning
alarm ranking
Correlation
Inspection
Labeling
Manuals
Security
Semantics
Static analysis
Title VALAR: Streamlining Alarm Ranking in Static Analysis with Value-Flow Assisted Active Learning
URI https://ieeexplore.ieee.org/document/10298558
WOSCitedRecordID wos001103357200180&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxcBUPor4lgfWQJw4dswWoVYMqKoKVF1Q5Y8zqtSmqKTw97HdpIiBgc3KZPnOee9s33sIXQvrksbILEpjpVyBomUkKaGRpo4eOwRxGKOC2QQfDPLJRAzrZvXQCwMA4fEZ3PhhuMs3S732R2Vuhyciz7K8hVqcs02zVpM8GXfgTciW-zqc5ryWGSKxuC2eeg7qE9-bknhR01jkvwxVAp70O_-cyT7q_nTm4eEWcw7QDpSHqNNYM-B6px6h13HxWIzusL90lot5cIHAhatiF3gkg1sCnpXYM82Zxo0wCfaHsngs52uI-vPlF3ax81lgcBH-irgWY33ropd-7_n-IaqdFCLp4KeKgBCtrORpaqnKTO5YSkKMtUYSpijnxGqSZkaAq5eUJNwIalUmqbEAmjCbHqN2uSzhBOGE6pRaZmMJKQUuc8_IGGcmYRBbo09R1y_X9H0jljFtVursj-_naM9HxD_BIOQCtavVGi7Rrv6sZh-rqxDib7Hqppg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgIMFUPor4xgNrIE7sOGGLUCsQpapKqbqgyh9nVKlNUWnh72ObpIiBgc3KZPnOee9s33sIXWbGJo0WLIhDKW2BokQgKKGBopYeWwSxGCO92QTvdNLhMOuWzeq-FwYA_OMzuHJDf5evZ2rpjsrsDo-ylLF0HW0466yyXatKH8YtfBOyYr8WqTkvhYZImF3nT00L9pHrTomcrGmYpb8sVTyitOr_nMsOavz05uHuCnV20RoUe6hemTPgcq_uo5dB3s57N9hdO4vpxPtA4NzWsVPcE94vAY8L7LjmWOFKmgS7Y1k8EJMlBK3J7BPb6Lk80Dj3_0VcyrG-NtBzq9m_vQtKL4VAWABaBECIkkbwODZUMp1anhIRbYwWJJGUc2IUiZnOwFZMUhCuM2okE1QbAEUSEx-gWjEr4BDhiKqYmsSEAmIKXKSOkyU80VECodHqCDXcco3evuUyRtVKHf_x_QJt3fUf26P2fefhBG276LgHGYScotpivoQztKk-FuP3-bkP9xeOW6nh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FACM+International+Conference+on+Automated+Software+Engineering+%3A+%5Bproceedings%5D&rft.atitle=VALAR%3A+Streamlining+Alarm+Ranking+in+Static+Analysis+with+Value-Flow+Assisted+Active+Learning&rft.au=Liu%2C+Pengcheng&rft.au=Lu%2C+Yifei&rft.au=Yang%2C+Wenhua&rft.au=Pan%2C+Minxue&rft.date=2023-09-11&rft.pub=IEEE&rft.eissn=2643-1572&rft.spage=1940&rft.epage=1951&rft_id=info:doi/10.1109%2FASE56229.2023.00098&rft.externalDocID=10298558