Perfce: Performance Debugging on Databases with Chaos Engineering-Enhanced Causality Analysis
Debugging performance anomalies in databases is challenging. Causal inference techniques enable qualitative and quantitative root cause analysis of performance downgrades. Nevertheless, causality analysis is challenging in practice, particularly due to limited observability. Recently, chaos engineer...
Saved in:
| Published in: | IEEE/ACM International Conference on Automated Software Engineering : [proceedings] pp. 1454 - 1466 |
|---|---|
| Main Authors: | , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
11.09.2023
|
| Subjects: | |
| ISSN: | 2643-1572 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Debugging performance anomalies in databases is challenging. Causal inference techniques enable qualitative and quantitative root cause analysis of performance downgrades. Nevertheless, causality analysis is challenging in practice, particularly due to limited observability. Recently, chaos engineering (CE) has been applied to test complex software systems. CE frameworks mutate chaos variables to inject catastrophic events (e.g., network slowdowns) to stress-test these software systems. The systems under chaos stress are then tested (e.g., via differential testing) to check if they retain normal functionality, such as returning correct SQL query outputs even under stress. To date, CE is mainly employed to aid software testing. This paper identifies the novel usage of CE in diagnosing performance anomalies in databases. Our framework, PERFCE, has two phases - offline and online. The offline phase learns statistical models of a database using both passive observations and proactive chaos experiments. The online phase diagnoses the root cause of performance anomalies from both qualitative and quantitative aspects on-the-fly. In evaluation, Perfce outperformed previous works on synthetic datasets and is highly accurate and moderately expensive when analyzing real-world (distributed) databases like MySQL and TiDB. |
|---|---|
| AbstractList | Debugging performance anomalies in databases is challenging. Causal inference techniques enable qualitative and quantitative root cause analysis of performance downgrades. Nevertheless, causality analysis is challenging in practice, particularly due to limited observability. Recently, chaos engineering (CE) has been applied to test complex software systems. CE frameworks mutate chaos variables to inject catastrophic events (e.g., network slowdowns) to stress-test these software systems. The systems under chaos stress are then tested (e.g., via differential testing) to check if they retain normal functionality, such as returning correct SQL query outputs even under stress. To date, CE is mainly employed to aid software testing. This paper identifies the novel usage of CE in diagnosing performance anomalies in databases. Our framework, PERFCE, has two phases - offline and online. The offline phase learns statistical models of a database using both passive observations and proactive chaos experiments. The online phase diagnoses the root cause of performance anomalies from both qualitative and quantitative aspects on-the-fly. In evaluation, Perfce outperformed previous works on synthetic datasets and is highly accurate and moderately expensive when analyzing real-world (distributed) databases like MySQL and TiDB. |
| Author | Ji, Zhenlan Wang, Shuai Ma, Pingchuan |
| Author_xml | – sequence: 1 givenname: Zhenlan surname: Ji fullname: Ji, Zhenlan email: zjiae@cse.ust.hk organization: The Hong Kong University of Science and Technology – sequence: 2 givenname: Pingchuan surname: Ma fullname: Ma, Pingchuan email: pmaab@cse.ust.hk organization: The Hong Kong University of Science and Technology – sequence: 3 givenname: Shuai surname: Wang fullname: Wang, Shuai email: shuaiw@cse.ust.hk organization: The Hong Kong University of Science and Technology |
| BookMark | eNotkF1LwzAUhqMouM39Ar3IH-hMTpqk8W509QMGCuqljNPmtKtsqTQdsn9vh149vLwfF--UXYQuEGM3UiykFO5u-VZoA-AWIEAthJDCnLG5sy5TWihwzqTnbAImVYnUFq7YNMYvIfQo7IR9vlJfV3TPT-z6PYaK-IrKQ9O0oeFd4CscsMRIkf-0w5bnW-wiL8JoE_VjJinC9tTyPMdDxF07HPky4O4Y23jNLmvcRZr_c8Y-Hor3_ClZvzw-58t1gpClQ-IzQdpra8inqddlJgGsttJbTRl6J72qpPV1ZWpRASlvJDhDOnNIrkZQM3b7t9sS0ea7b_fYHzdSwHiCTdUv1xtWbg |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ASE56229.2023.00106 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798350329964 |
| EISSN | 2643-1572 |
| EndPage | 1466 |
| ExternalDocumentID | 10298374 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN 6J9 AAJGR AAWTH ABLEC ACREN ADYOE ADZIZ AFYQB ALMA_UNASSIGNED_HOLDINGS AMTXH BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-a284t-d80e5d576ed44d5b81227571d75e8ad91d3c17dfc6f0c2e3d61296e589ae9fa23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001103357200116&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:32:28 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a284t-d80e5d576ed44d5b81227571d75e8ad91d3c17dfc6f0c2e3d61296e589ae9fa23 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_10298374 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Sept.-11 |
| PublicationDateYYYYMMDD | 2023-09-11 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-Sept.-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE/ACM International Conference on Automated Software Engineering : [proceedings] |
| PublicationTitleAbbrev | ASE |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0051577 ssib057256115 |
| Score | 2.296513 |
| Snippet | Debugging performance anomalies in databases is challenging. Causal inference techniques enable qualitative and quantitative root cause analysis of performance... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1454 |
| SubjectTerms | Causality Analysis Chaos Chaos Engineering Debugging Distributed databases Observability Performance Debugging Root cause analysis Software systems Software testing |
| Title | Perfce: Performance Debugging on Databases with Chaos Engineering-Enhanced Causality Analysis |
| URI | https://ieeexplore.ieee.org/document/10298374 |
| WOSCitedRecordID | wos001103357200116&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYmAqH0V8ywOrIXadOGZDpRVTFQmQuqDKsS-UJUVNwu_n7CZtFwa2KFN0_nh3l3vvEXJXuNxxl6TMJDpnUuaSIe5oJnCvOExQnLU2mE2o6TSdzXTWktUDFwYAwvAZ3PvH8C_fLW3jW2V4woXGgkruk32lkjVZq9s8sULw5nyT-yJOK9XKDPFIPzy9jhHqheemCC9qyr3H0Y6hSsCTSf-fX3JEBltmHs02mHNM9qA8If3OmoG2J_WUfGSwKiw80mxLDKB4tzS-wfxJlyV9NrXxEFZR34qlo4VZVnRHnZCNy0WYDqAj01QhW6edgsmAvE_Gb6MX1jopMIPwUzOMOsQOSwtwUro4R1QXKlbcqRhS4zR3Q8uVK2xSRFbA0GHeoxOIUy_dXRgxPCO9clnCOaEqUoUXAMLbyUgbgTYaJGARBUUSC5VekIEP1_x7LZYx7yJ1-cf7K3LoV8SPYHB-TXr1qoEbcmB_6q9qdRuW-BdxTqbL |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgIMFUPor4xgNrIHadOGZDpVURpYpEkbqgyrEvlCVBTcLvx3aTtgsDW5QpOn-8u8u99xC6TXWiiQ4jT4Yi8RhLmGdwR3jU7BVtEhStlHJmE3w8jqZTEddkdceFAQA3fAZ39tH9y9e5qmyrzJxwKkxBxbbRTsAY9Zd0rWb7BNzANyGr7NcgNee10BDxxf3jW9-APbXsFGplTYl1OdqwVHGIMmj_81sOUGfNzcPxCnUO0RZkR6jdmDPg-qweo48YFqmCBxyvqQHY3C6VbTF_4jzDT7KUFsQKbJuxuDeXeYE39Am9fjZ38wG4J6vC5eu40TDpoPdBf9IberWXgicNAJWeiTsE2hQXoBnTQWJwnfKAE80DiKQWRHcV4TpVYeorCl1tMh8RQhBZ8e5U0u4JamV5BqcIc5-nVgLI3E-SKR-EFMDAlFGQhgHl0Rnq2HDNvpdyGbMmUud_vL9Be8PJ62g2eh6_XKB9uzp2IIOQS9QqFxVcoV31U34Vi2u33L9NqqoS |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FACM+International+Conference+on+Automated+Software+Engineering+%3A+%5Bproceedings%5D&rft.atitle=Perfce%3A+Performance+Debugging+on+Databases+with+Chaos+Engineering-Enhanced+Causality+Analysis&rft.au=Ji%2C+Zhenlan&rft.au=Ma%2C+Pingchuan&rft.au=Wang%2C+Shuai&rft.date=2023-09-11&rft.pub=IEEE&rft.eissn=2643-1572&rft.spage=1454&rft.epage=1466&rft_id=info:doi/10.1109%2FASE56229.2023.00106&rft.externalDocID=10298374 |