InfeRE: Step-by-Step Regex Generation via Chain of Inference
Automatically generating regular expressions (abbrev. regexes) from natural language description (NL2RE) has been an emerging research area. Prior studies treat regex as a linear sequence of tokens and generate the final expressions autoregressively in a single pass. They did not take into account t...
Uloženo v:
| Vydáno v: | IEEE/ACM International Conference on Automated Software Engineering : [proceedings] s. 1505 - 1515 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
11.09.2023
|
| Témata: | |
| ISSN: | 2643-1572 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Automatically generating regular expressions (abbrev. regexes) from natural language description (NL2RE) has been an emerging research area. Prior studies treat regex as a linear sequence of tokens and generate the final expressions autoregressively in a single pass. They did not take into account the step-by-step internal text-matching processes behind the final results. This significantly hinders the efficacy and interpretability of regex generation by neural language models. In this paper, we propose a new paradigm called InfeRE, which decomposes the generation of regexes into chains of step-bystep inference. To enhance the robustness, we introduce a self-consistency decoding mechanism that ensembles multiple outputs sampled from different models. We evaluate InfeRE on two publicly available datasets, NL-RX-Turk and KB13, and compare the results with state-of-the-art approaches and the popular tree-based generation approach TRANX. Experimental results show that InfeRE substantially outperforms previous baselines, yielding 16.3% and 14.7% improvement in DFA@5 accuracy on two datasets, respectively. |
|---|---|
| AbstractList | Automatically generating regular expressions (abbrev. regexes) from natural language description (NL2RE) has been an emerging research area. Prior studies treat regex as a linear sequence of tokens and generate the final expressions autoregressively in a single pass. They did not take into account the step-by-step internal text-matching processes behind the final results. This significantly hinders the efficacy and interpretability of regex generation by neural language models. In this paper, we propose a new paradigm called InfeRE, which decomposes the generation of regexes into chains of step-bystep inference. To enhance the robustness, we introduce a self-consistency decoding mechanism that ensembles multiple outputs sampled from different models. We evaluate InfeRE on two publicly available datasets, NL-RX-Turk and KB13, and compare the results with state-of-the-art approaches and the popular tree-based generation approach TRANX. Experimental results show that InfeRE substantially outperforms previous baselines, yielding 16.3% and 14.7% improvement in DFA@5 accuracy on two datasets, respectively. |
| Author | Shen, Beijun Zhang, Shuai Gu, Xiaodong Chen, Yuting |
| Author_xml | – sequence: 1 givenname: Shuai surname: Zhang fullname: Zhang, Shuai email: zhangshuai2000@sjtu.edu.cn organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,Shanghai,China – sequence: 2 givenname: Xiaodong surname: Gu fullname: Gu, Xiaodong email: xiaodong.gu@sjtu.edu.cn organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,Shanghai,China – sequence: 3 givenname: Yuting surname: Chen fullname: Chen, Yuting email: chenyt@sjtu.edu.cn organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,Shanghai,China – sequence: 4 givenname: Beijun surname: Shen fullname: Shen, Beijun email: bjshen@sjtu.edu.cn organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,Shanghai,China |
| BookMark | eNotj81Kw0AURkdRsK19Al3MC0y8d34z4qaUWAsFodV1mWbuaEQnJQli394WXR2-xfngjNlFbjMxdoNQIIK_m20qY6X0hQSpCgBEPGNT73ypDCjpvdXnbCStVgKNk1ds3PcfAOY43Ig9LHOidXXPNwPtxe4gTuRreqMfvqBMXRiaNvPvJvD5e2gybxM_KR3lmq7ZZQqfPU3_OWGvj9XL_EmsnhfL-Wwlgiz1IHx0ZGOSFgNA8Ek5o5PSaF2tHCCUZENpIu6i87VJiWQqdZQmxeiPPUFN2O3fb0NE233XfIXusEWQvtTWql_83kjc |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ASE56229.2023.00111 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798350329964 |
| EISSN | 2643-1572 |
| EndPage | 1515 |
| ExternalDocumentID | 10298466 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62232003,62102244,62032004,62272296 funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN 6J9 AAJGR AAWTH ABLEC ACREN ADYOE ADZIZ AFYQB ALMA_UNASSIGNED_HOLDINGS AMTXH BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-a284t-9d7e6df261a00a9f3754f34167c370108e6a85d1bd79c5ffe2f84d25fdd9001a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001103357200120&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:32:41 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a284t-9d7e6df261a00a9f3754f34167c370108e6a85d1bd79c5ffe2f84d25fdd9001a3 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_10298466 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Sept.-11 |
| PublicationDateYYYYMMDD | 2023-09-11 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-Sept.-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE/ACM International Conference on Automated Software Engineering : [proceedings] |
| PublicationTitleAbbrev | ASE |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0051577 ssib057256115 |
| Score | 2.3025491 |
| Snippet | Automatically generating regular expressions (abbrev. regexes) from natural language description (NL2RE) has been an emerging research area. Prior studies... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1505 |
| SubjectTerms | Benchmark testing Chain of Inference Codes Decoding Natural languages Regex Generation Robustness Self-Consistency Decoding Software engineering Task analysis |
| Title | InfeRE: Step-by-Step Regex Generation via Chain of Inference |
| URI | https://ieeexplore.ieee.org/document/10298466 |
| WOSCitedRecordID | wos001103357200120&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ09T8MwEIYtWjEwlY8ivuWB1RAncRwjFlS1oktVFZC6VbbPhi4pKmkF_55zmhQxMDDFiiI5Osd67uK7ewm5RkJDBlww67VjaSw1QwgmLLJpZhTEFpyuxCbkaJRPp2pcF6tXtTDOuSr5zN2EYXWWDwu7Cr_KcIfHCnmZtUhLSrkp1mo-HiER3pxvfV_ktJR1myEeqduHpz6iPg61KXFSnT_wX4IqFU8GnX--yT7p_lTm0fGWOQdkxxWHpNNIM9B6px6R-yE-Punf0ZDFxcwXC1c6ca_uk246TYcFoeu5pr03PS_owtNhM0OXvAz6z71HVgslMI10KZkC6TLwGAzpKNLKB1lbj3jKpE0kBly5y3QugBuQygrvXezzFGLhARRaQifHpF0sCndCKDdGo8sHBt2mFH2b3EQeY5BMmMSCAHFKusEas_dNL4xZY4izP-6fk71g8JBhwfkFaZfLlbsku3Zdzj-WV9UKfgPqdJma |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PT8IwFMcbRRM94Q-Mv-3Ba3Xt1nU1XgyBQERCEBNupD-VyzAIRP97X8fAePDgac2ypMvrms9763vvi9A1ENqmlnJivHIkYUIRgGBMIpOkWlpmrFOF2ITodrPhUPbKYvWiFsY5VySfuZswLM7y7cTMw68y2OFMAi_TTbTFk4TRZbnW6vPhAvBN6dr7BVILUTYaopG8fXhuAOxZqE5hcXECQX9JqhREaVb_-S57qPZTm4d7a-rsow2XH6DqSpwBl3v1EN234fF-4w6HPC6iv0i44r57dZ942Ws6LAlejBWuv6lxjicet1cz1NBLszGot0gplUAU8GVGpBUutR7CIRVFSvogbOsBUKkwsYCQK3Opyril2gppuPeO-SyxjHtrJVhCxUeokk9yd4ww1VqB02c1OE4JeDeZjjxEISnXsbHc8hNUC9YYvS-7YYxWhjj94_4V2mkNnjqjTrv7eIZ2g_FDvgWl56gym87dBdo2i9n4Y3pZrOY3HM-c4Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FACM+International+Conference+on+Automated+Software+Engineering+%3A+%5Bproceedings%5D&rft.atitle=InfeRE%3A+Step-by-Step+Regex+Generation+via+Chain+of+Inference&rft.au=Zhang%2C+Shuai&rft.au=Gu%2C+Xiaodong&rft.au=Chen%2C+Yuting&rft.au=Shen%2C+Beijun&rft.date=2023-09-11&rft.pub=IEEE&rft.eissn=2643-1572&rft.spage=1505&rft.epage=1515&rft_id=info:doi/10.1109%2FASE56229.2023.00111&rft.externalDocID=10298466 |