Mutation-based Fault Localization of Deep Neural Networks

Deep neural networks (DNNs) are susceptible to bugs, just like other types of software systems. A significant uptick in using DNN, and its applications in wide-ranging areas, including safety-critical systems, warrant extensive research on software engineering tools for improving the reliability of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE/ACM International Conference on Automated Software Engineering : [proceedings] s. 1301 - 1313
Hlavní autoři: Ghanbari, Ali, Thomas, Deepak-George, Arshad, Muhammad Arbab, Rajan, Hridesh
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 11.09.2023
Témata:
ISSN:2643-1572
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Deep neural networks (DNNs) are susceptible to bugs, just like other types of software systems. A significant uptick in using DNN, and its applications in wide-ranging areas, including safety-critical systems, warrant extensive research on software engineering tools for improving the reliability of DNN-based systems. One such tool that has gained significant attention in the recent years is DNN fault localization. This paper revisits mutation-based fault localization in the context of DNN models and proposes a novel technique, named deepmufl, applicable to a wide range of DNN models. We have implemented deepmufl and have evaluated its effectiveness using 109 bugs obtained from StackOverflow. Our results show that deepmufl detects 53/109 of the bugs by ranking the buggy layer in top-1 position, outperforming state-of-the-art static and dynamic DNN fault localization systems that are also designed to target the class of bugs supported by deepmufl. Moreover, we observed that we can halve the fault localization time for a pre-trained model using mutation selection, yet losing only 7.55% of the bugs localized in ton-1 position.
AbstractList Deep neural networks (DNNs) are susceptible to bugs, just like other types of software systems. A significant uptick in using DNN, and its applications in wide-ranging areas, including safety-critical systems, warrant extensive research on software engineering tools for improving the reliability of DNN-based systems. One such tool that has gained significant attention in the recent years is DNN fault localization. This paper revisits mutation-based fault localization in the context of DNN models and proposes a novel technique, named deepmufl, applicable to a wide range of DNN models. We have implemented deepmufl and have evaluated its effectiveness using 109 bugs obtained from StackOverflow. Our results show that deepmufl detects 53/109 of the bugs by ranking the buggy layer in top-1 position, outperforming state-of-the-art static and dynamic DNN fault localization systems that are also designed to target the class of bugs supported by deepmufl. Moreover, we observed that we can halve the fault localization time for a pre-trained model using mutation selection, yet losing only 7.55% of the bugs localized in ton-1 position.
Author Rajan, Hridesh
Ghanbari, Ali
Arshad, Muhammad Arbab
Thomas, Deepak-George
Author_xml – sequence: 1
  givenname: Ali
  surname: Ghanbari
  fullname: Ghanbari, Ali
  email: alig@iastate.edu
  organization: Iowa State University,Dept. of Computer Science,Ames,Iowa,USA
– sequence: 2
  givenname: Deepak-George
  surname: Thomas
  fullname: Thomas, Deepak-George
  email: dgthomas@iastate.edu
  organization: Iowa State University,Dept. of Computer Science,Ames,Iowa,USA
– sequence: 3
  givenname: Muhammad Arbab
  surname: Arshad
  fullname: Arshad, Muhammad Arbab
  email: arbab@iastate.edu
  organization: Iowa State University,Dept. of Computer Science,Ames,Iowa,USA
– sequence: 4
  givenname: Hridesh
  surname: Rajan
  fullname: Rajan, Hridesh
  email: hridesh@iastate.edu
  organization: Iowa State University,Dept. of Computer Science,Ames,Iowa,USA
BookMark eNotj81Kw0AUhUdRsK19Al3kBZLeufO_LLVVIdWFui6TzB2IxqTkB9Gnb1BXH-d8cODM2UXTNsTYDYeMc3Cr9ctWaUSXIaDIALjhZ2zpjLNCgUDntDxnM9RSpFwZvGLzvn8HUFMwM-b24-CHqm3SwvcUkp0f6yHJ29LX1c-vSNqY3BEdkycaO19PGL7a7qO_ZpfR1z0t_7lgb7vt6-YhzZ_vHzfrPPVo5ZBqYUuwnLgFHqILlhuU2pvCOwOEGG0MMRQqRqkLY8gapb0tjZI2TAWKBbv9262I6HDsqk_ffR844HTQSXECwg5I2A
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ASE56229.2023.00171
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350329964
EISSN 2643-1572
EndPage 1313
ExternalDocumentID 10298394
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: 2127309,2223812,2120448,1934884
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
6J9
AAJGR
AAWTH
ABLEC
ACREN
ADYOE
ADZIZ
AFYQB
ALMA_UNASSIGNED_HOLDINGS
AMTXH
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-a284t-638c081e1801df9d817246a7ba970e22f8fdfdb5ff46b77e8756a8c7548d6b723
IEDL.DBID RIE
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001103357200104&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:32:28 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a284t-638c081e1801df9d817246a7ba970e22f8fdfdb5ff46b77e8756a8c7548d6b723
PageCount 13
ParticipantIDs ieee_primary_10298394
PublicationCentury 2000
PublicationDate 2023-Sept.-11
PublicationDateYYYYMMDD 2023-09-11
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-11
  day: 11
PublicationDecade 2020
PublicationTitle IEEE/ACM International Conference on Automated Software Engineering : [proceedings]
PublicationTitleAbbrev ASE
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0051577
ssib057256115
Score 2.3629565
Snippet Deep neural networks (DNNs) are susceptible to bugs, just like other types of software systems. A significant uptick in using DNN, and its applications in...
SourceID ieee
SourceType Publisher
StartPage 1301
SubjectTerms Artificial neural networks
Benchmark testing
Computer bugs
Data models
Deep Neural Network
Fault Localization
Location awareness
Mutation
Reliability engineering
Software systems
Title Mutation-based Fault Localization of Deep Neural Networks
URI https://ieeexplore.ieee.org/document/10298394
WOSCitedRecordID wos001103357200104&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ27T8MwEMYtihiYyqOItzywGmLHzsUjglYMpaoESN0qO7YlpKqt2oS_n7ObthMDUyJP1iWffufHd0fIQ5lnVSFVzpxSgkkLjmmDwitsVYq47a9D6loyhNGonEz0uDWrJy-M9z5dPvOP8TWd5btF1cStMlS40Ah02SEdANiYtbY_jwKEN-e73Bc5DdCWGeKZfnr-6CPqRfSmiFjUlCfT_L6hSuLJoPvPmZyQ3t6ZR8c75pySAz8_I91tawbaKvWc6Pdmc8bOIqYcHZhmVtNhBFdrvKSLQF-9X9JYnsPM8JHug6975GvQ_3x5Y22XBGYQLTVDAVXIdc-RNS5oV2JKIgsD1mjIvBChDC44q0KQhQXwuEApTFkBLlUcDoj8ghzOF3N_SaiVeUxQigyEk5mUGvVpgzSoWQFWqSvSi6GYLjeFMKbbKFz_MX5DjmO04_UKzm_JYb1q_B05qn7q7_XqPn2-X2rml6k
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMeDTkFP88fE3-bgtdqkSdMcRTcmdmPghN1G0iQgjHVsrX-_L1m3nTx4askpvPbL5-XH9z2EHrMkLlLGk8hwTiOmhYmkAuGlusio3_aXLnQtycVwmE0mctSY1YMXxlobLp_ZJ_8azvJNWdR-qwwUTiUAne2jA84YJWu71ub34QLwTcg2-wVSC9EUGiKxfH757ALsqXenUF_WlATb_K6lSiBKr_3PuZygzs6bh0db6pyiPTs_Q-1NcwbcaPUcyUG9PmWPPKgM7ql6VuHco6uxXuLS4TdrF9gX6FAzeIQb4asO-up1x6_9qOmTECmASxWBhAoguyVAG-OkySApYakSWkkRW0pd5owzmjvHUi2EhSVKqrJCwGLFwABNLlBrXs7tJcKaJT5FSWNBDYsZk6BQ7ZgC1VKhOb9CHR-K6WJdCmO6icL1H-MP6Kg_HuTT_H34cYOOfeT9ZQtCblGrWtb2Dh0WP9X3ankfPuUvgrOa8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FACM+International+Conference+on+Automated+Software+Engineering+%3A+%5Bproceedings%5D&rft.atitle=Mutation-based+Fault+Localization+of+Deep+Neural+Networks&rft.au=Ghanbari%2C+Ali&rft.au=Thomas%2C+Deepak-George&rft.au=Arshad%2C+Muhammad+Arbab&rft.au=Rajan%2C+Hridesh&rft.date=2023-09-11&rft.pub=IEEE&rft.eissn=2643-1572&rft.spage=1301&rft.epage=1313&rft_id=info:doi/10.1109%2FASE56229.2023.00171&rft.externalDocID=10298394