Causality-Aided Trade-Off Analysis for Machine Learning Fairness
There has been an increasing interest in enhancing the fairness of machine learning (ML). Despite the growing number of fairness-improving methods, we lack a systematic understanding of the trade-offs among factors considered in the ML pipeline when fairness-improving methods are applied. This under...
Saved in:
| Published in: | IEEE/ACM International Conference on Automated Software Engineering : [proceedings] pp. 371 - 383 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
11.09.2023
|
| Subjects: | |
| ISSN: | 2643-1572 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | There has been an increasing interest in enhancing the fairness of machine learning (ML). Despite the growing number of fairness-improving methods, we lack a systematic understanding of the trade-offs among factors considered in the ML pipeline when fairness-improving methods are applied. This understanding is essential for developers to make informed decisions regarding the provision of fair ML services. Nonetheless, it is extremely difficult to analyze the trade-offs when there are multiple fairness parameters and other crucial metrics involved, coupled, and even in conflict with one another. This paper uses causality analysis as a principled method for analyzing trade-offs between fairness parameters and other crucial metrics in ML pipelines. To practically and effectively conduct causality analysis, we propose a set of domain-specific optimizations to facilitate accurate causal discovery and a unified, novel interface for trade-off analysis based on well-established causal inference methods. We conduct a comprehensive empirical study using three real-world datasets on a collection of widely-used fairness-improving techniques. Our study obtains actionable suggestions for users and developers of fair ML. We further demonstrate the versatile usage of our approach in selecting the optimal fairness-improving method, paving the way for more ethical and socially responsible AI technologies. |
|---|---|
| ISSN: | 2643-1572 |
| DOI: | 10.1109/ASE56229.2023.00105 |