Applied Spatial Statistics and Econometrics Data Analysis in R

This textbook is a comprehensive introduction to applied spatial data analysis using R. Each chapter walks the reader through a different method, explaining how to interpret the results and what conclusions can be drawn. The author team showcases key topics, including unsupervised learning, causal i...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Kopczewska, Katarzyna
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: London Routledge 2021
Taylor and Francis
Taylor & Francis Group
Vydání:1
Edice:Routledge Advanced Texts in Economics and Finance
Témata:
ISBN:0367470764, 9780367470777, 0367470772, 9780367470760
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This textbook is a comprehensive introduction to applied spatial data analysis using R. Each chapter walks the reader through a different method, explaining how to interpret the results and what conclusions can be drawn. The author team showcases key topics, including unsupervised learning, causal inference, spatial weight matrices, spatial econometrics, heterogeneity and bootstrapping. It is accompanied by a suite of data and R code on Github to help readers practise techniques via replication and exercises. This text will be a valuable resource for advanced students of econometrics, spatial planning and regional science. It will also be suitable for researchers and data scientists working with spatial data.
AbstractList This textbook is a comprehensive introduction to applied spatial data analysis using R. Each chapter walks the reader through a different method, explaining how to interpret the results and what conclusions can be drawn. The author team showcases key topics, including unsupervised learning, causal inference, spatial weight matrices, spatial econometrics, heterogeneity and bootstrapping. It is accompanied by a suite of data and R code on Github to help readers practise techniques via replication and exercises. This text will be a valuable resource for advanced students of econometrics, spatial planning and regional science. It will also be suitable for researchers and data scientists working with spatial data. Introduction Statement by the American Statistical Association on statistical significance and p-value used in the book Acknowledgments Chapter 1: Basic operations in the R software (Mateusz Kopyt) 1.1 About the R software 1.2. The R software interface 1.2.1 R Commander 1.2.2. RStudio 1.3 Using help 1.4 Additional packages 1.5 R Language - basic features 1.6 Defining and loading data 1.7 Basic operations on objects 1.8 Basic statistics of the data set 1.9 Basic visualizations 1.9.1 Scatterplot and line chart 1.9.2 Column chart 1.9.3 Pie chart 1.9.4 Boxplot 1.10 Regression in examples Chapter 2: Spatial data, R classes and basic graphics (Katarzyna Kopczewska) 2.1 Loading and basic operations on spatial vector data 2.2. Creating, checking and converting spatial classes 2.3 Selected color palettes 2.4 Basic contour maps with a color layer Scheme 1 - with colorRampPalette() from the grDevices:: package Scheme 2 - with choropleth() from the GISTools:: package Scheme 3 - with findInterval() from the base:: package Scheme 4 - with findColours() from the classInt:: package Scheme 5 - with spplot() from the sp:: package 2.5 Basic operations and graphs for point data Scheme 1 - with points() from the graphics:: package – locations only Scheme 2 - with spplot() from the sp:: package - locations and values Scheme 3 - with findInterval() from the base:: package - locations, values, different size of symbols 2.6 Basic operations on rasters 2.7 Basic operations on grids 2.8 Spatial geometries Chapter 3: Spatial data from the Web API (Mateusz Kopyt, Katarzyna Kopczewska) 3.1 What is the API? 3.2. Creating contextual maps with use of API 3.3 Ways to visualize spatial data - maps for point and regional data Scheme 1 - with bubbleMap() from the RgoogleMaps:: package Scheme 2 - with ggmap() from the ggmap:: package Scheme 3 - with PlotOnStaticMap() from the RgoogleMap:: package Scheme 4 - with RGoogleMaps:: GetMap() and conversion of staticMap into a raster 3.4 Spatial data in vector format - example of the OSM database 3.5 Access to non-spatial internet databases and resources via API - examples 3.6 Geo-coding of data Chapter 4: Spatial weight matrices, distance measurement, tessellation, spatial statistics (Katarzyna Kopczewska, Maria Kubara) 4.1. Introduction to spatial data analysis 4.2 Spatial weights matrix 4.2.1 General framework for creating spatial weights matrices 4.2.2 Selection of a neighborhood matrix 4.2.3 Neighborhood matrices according to the contiguity criterion 4.2.4 Matrix of k nearest neighbors (knn) 4.2.5 Matrix based on distance criterion (neighbours in a radius of d km) 4.2.6 Inverse distance matrix 4.2.7 Summarizing and editing of spatial weights matrix 4.2.8 Spatial lags and higher order neighborhood 4.2.9 Creating weights matrix based on group membership 4.3 Distance measurement and spatial aggregation 4.4 Tessellation 4.5 Spatial statistics 4.5.1 Global statistics 4.5.1.1 Global Moran I statistics 4.5.1.2 Global Geary C statistics 4.5.1.3 Join-count statistics 4.5.2. Local spatial autocorrelation statistics 4.5.2.1 Local Moran I statistics (LISA) 4.5.2.2 Local Geary C statistics 4.5.2.3 Local Getis-Ord Gi statistics 4.5.2.4. Local spatial heteroscedasticity (LOSH) 4.6 Spatial cross-correlations for two variables 4.7 Correlogram Chapter 5: Applied spatial econometrics (Katarzyna Kopczewska) 5.1 Value added from spatial modelling and classes of models 5.2 Basic cross-sectional models 5.2.1 Estimation 5.2.2 Quality assessment of spatial models 5.2.2.1 Information criteria and pseudo R2 in assessing model fit 5.2.2.2 Test for heteroskedasticity of model residuals 5.2.2.3 Residual autocorrelation tests 5.2.2.4 LM tests for model type selection 5.2.2.5 LR and Wald tests for model restrictions 5.2.3 Selection of spatial weight matrix and modelling of diffusion strength 5.2.4 Forecasts in spatial models 5.2.5 Causality 5.3 Selected specifications of cross-sectional spatial models 5.3.1 Uni-directional spatial interaction models 5.3.2 Cumulative models 5.3.3 Bootstrapped models for big data 5.3.4 Models for grid data 5.4 Spatial panel models Chapter 6: Geographically Weighted Regression - modelling spatial heterogeneity (Piotr Ćwiakowski) 6.1 Geographically weighted regression 6.2 Basic estimation of GWR model 6.2.1 Estimation of the reference OLS model 6.2.2 Choosing the optimal bandwidth for a dataset 6.2.3 Local geographically weighted statistics 6.2.4 Geographically weighted regression estimation 6.2.5 Basic diagnostic tests of the GWR model 6.2.6 Testing the significance of parameters in GWR 6.2.7 Selection of the optimal functional form of the model 6.2.8 GWR with heteroskedastic random error 6.3 The problem of collinearity in GWR models 6.3.1 Diagnosing collinearity in GWR 6.4. Mixed GWR 6.5. Robust regression in the GWR model 6.6. Geographically and Temporally Weighted Regression (GTWR) Chapter 7: Unattended spatial learning (Katarzyna Kopczewska) 7.1 Clustering of spatial points with k-means, PAM and CLARA algorithms 7.2 Clustering with the DBSCAN algorithm 7.3 Spatial Principal Component Analysis 7.4 Spatial Drift 7.5 Spatial hierarchical clustering 7.6 Spatial oblique decision tree Chapter 8: Spatial point pattern analysis and spatial interpolation (Kateryna Zabarina) 8.1. Introduction and main definitions 8.1.1. Dataset 8.1.2. Creation of window and point pattern 8.1.3. Marks 8.1.4. Covariates 8.1.5. Duplicated points 8.1.6. Projection and rescaling 8.2. Intensity-based analysis of unmarked point pattern 8.2.1. Quadrat test 8.2.2. Tests with spatial covariates 8.3. Distance-based analysis of the unmarked point pattern 8.3.1. Distance-based measures 8.3.1.1. Ripley’s K function 8.3.1.2. F function 8.3.1.3. G function 8.3.1.4. J function 8.3.1.5. Distance-based CSR tests 8.3.2. Monte-Carlo tests 8.3.3. Envelopes 8.3.4. Non-graphical tests 8.4. Selection and estimation of a proper model for unmarked point pattern 8.4.1. Theoretical note 8.4.2. Choice of parameters 8.4.3. Estimation and results 8.4.4. Conclusions 8.5. Intensity-based analysis of marked point pattern 8.5.1. Segregation test 8.6. Correlation and spacing analysis of the marked point pattern 8.6.1. Analysis under assumption of stationarity 8.6.1.1. K function variations for multitype pattern 8.6.1.2. Mark connection function 8.6.1.3. Analysis of within and between types of dependence 8.6.1.4. Randomisation test of components’ independence 8.6.2. Analysis under assumption of non-stationarity 8.6.2.1. Inhomogeneous K function variations for multitype pattern 8.7. Selection and estimation of a proper model for unmarked point pattern 8.7.1. Theoretical note 8.7.2. Choice of optimal radius 8.7.3. Within-industry interaction radius 8.7.4. Between-industry interaction radius 8.7.5. Estimation and results 8.7.6. Model with no between-industry interaction 8.7.7. Model with all possible interactions 8.8. Spatial interpolation methods - kriging 8.8.1. Basic definitions 8.8.2. Description of chosen kriging methods 8.8.3. Data preparation for the study 8.8.4. Estimation and discussion Chapter 9: Spatial Sampling and Bootstrap (Katarzyna Kopczewska, Piotr Ćwiakowski) 9.1 Spatial point data - object classes and spatial aggregation 9.2 Spatial sampling - randomization / generation of new points on the surface 9.3 Spatial sampling - sampling of sub-samples from existing points 9.3.1 Simple sampling 9.3.2 The options of the sperrorest:: package 9.3.3 Sampling points from areas determined by the k-means algorithm - block bootstrap 9.3.4 Sampling points from moving blocks (moving block bootstrap, MBB) 9.4. The use of spatial sampling and bootstrap in cross-validation of models Chapter 10: Spatial Big Data (Piotr Wójcik) 10.1. Examples of big data usage 10.2. Spatial big data 10.2.1. Spatial data types 10.2.2. Challenges related to the use of spatial Big Data 10.2.2.1. Processing of large data sets 10.2.2.2. Mapping and reduction 10.2.2.3. Spatial data indexing 10.3. The sf:: package - simple features 10.3.1 sf class – a special data frame 10.3.2 Data with POLYGON geometry 10.3.3 Data with POINT geometry 10.3.4 Visualization using the ggplot2:: package 10.3.5 Selected functions for spatial analysis 10.4. Using the dplyr:: package functions 10.5. Example analysis of large raster data 10.5.1. Measurement of economic inequalities from space 10.5.2. Analysis using the raster:: package functions 10.5.3 Other functions of the raster:: package 10.5.4 Potential alternative – stars:: package Chapter 11: Spatial unsupervised learning – applications of market basket analysis in geomarketing (Alessandro Festi) 11.1 Introduction to market basket analysis 11.2 Data needed in spatial market basket analysis 11.3 Simulation of data 11.4 The market basket analysis technique applied to geolocation data 11.5 Spatial association rules 11.6 Applications to geomarketing 11.6.1 Finding the best location for a business 11.6.2 Targeting 11.6.3 Discovery of competitors 11.7 Conclusions and further approaches Appendix 1: Data used in the examples A1. Data set No. 1 / dataset1 / - poviat panel data with many variables A2. Dataset no 2 /dataset2/ – geo-located point data A3. Dataset no 3 /dataset3/ – monthly unemployment rate in poviats (NTS4) A4. Dataset no 4 /dataset4/ - grid data f
This textbook is a comprehensive introduction to applied spatial data analysis using R. Each chapter walks the reader through a different method, explaining how to interpret the results and what conclusions can be drawn. The author team showcases key topics, including unsupervised learning, causal inference, spatial weight matrices, spatial econometrics, heterogeneity and bootstrapping. It is accompanied by a suite of data and R code on Github to help readers practise techniques via replication and exercises. This text will be a valuable resource for advanced students of econometrics, spatial planning and regional science. It will also be suitable for researchers and data scientists working with spatial data.
This textbook is a comprehensive introduction to applied spatial data analysis using R. Each chapter walks the reader through a different method, explaining how to interpret the results and what conclusions can be drawn. The author team showcases key topics, including unsupervised learning, causal inference, spatial weight matrices, spatial econometrics, heterogeneity and bootstrapping. It is accompanied by a suite of data and R code on Github to help readers practise techniques via replication and exercises. This text will be a valuable resource for advanced students of econometrics, spatial planning and regional science. It will also be suitable for researchers and data scientists working with spatial data.
This textbook is a comprehensive introduction to applied spatial data analysis, using R. Each chapter walks the reader through a different method, explaining how to interpret the results and what conclusions can be drawn.
Author Kopczewska, Katarzyna
Author_xml – sequence: 1
  fullname: Kopczewska, Katarzyna
BackLink https://cir.nii.ac.jp/crid/1130287121408403977$$DView record in CiNii
BookMark eNqNkctPGzEQxl0VqhKaI_ccKiGEQsceP48QhYeExAHU68retYWVjZ2ul0T892xYDuXGZV76fZ9mNBNykHLyhJxQuODI-B-jNAVAQGTUfCPTT_13MgGUiitQkh-SCQMGAFJL84NM6NBxJYSRP8m0lOhAGGSGMnFEzi83mzb6Zva4sX207eyxH3LpY11mNjWzZZ1TXvu-Gwa_yGGwbfHTj3xM_l4vnxa38_uHm7vF5f3cMo0K5x5lUN4pVTvkQTZUBhSWuhAwMF1LMI0wgXKhg_fWUQVaGaedrp0I0mk8JmejsS0rvyvPue1LtW29y3lVqvFwADUU_OsslwN7OrKbLv978aWv3rHap76zbbW8WkgUCune9fdIphirOu4jpQhMK8ooB80BjVIDxkcsppC7td3lrm2q3r62uQudTXUs_-_x8axBtvyajEK1__1nebX1XYk5MXwD6JGbpw
ContentType eBook
Book
Copyright 2021 Katarzyna Kopczewska
Copyright_xml – notice: 2021 Katarzyna Kopczewska
DBID RYH
DEWEY 519.5
DOI 10.4324/9781003033219
DatabaseName CiNii Complete
DatabaseTitleList




DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Applied Sciences
Mathematics
EISBN 9781003033219
1000079740
1000079767
9781000079784
9781000079760
1003033210
1000079783
9781000079746
Edition 1
1st edition
1st
ExternalDocumentID 9781000079784
9781000079746
EBC6357314
BC05156854
9781003033219
10_4324_9781003033219_version2
GroupedDBID AABBV
AAGVH
ABARN
ABEQL
ABQPQ
ADNEN
ADVEM
AERYV
AESSL
AEUHU
AHWGJ
AISUA
AIXXW
AJFER
ALKVF
ALMA_UNASSIGNED_HOLDINGS
AUKZS
AXTGW
AYJFG
BBABE
CZZ
EBATF
EMKMY
INALI
JTX
UCHLF
38.
ABYSD
AIOUF
ACQBU
RYH
ID FETCH-LOGICAL-a28373-e36f7eb77cb34f6d16f35a1bff3f28c609d59f1458feeab170879b8b8cb5f6b83
ISBN 0367470764
9780367470777
0367470772
9780367470760
IngestDate Mon Nov 18 02:11:11 EST 2024
Tue Apr 22 04:05:07 EDT 2025
Wed Dec 10 11:32:43 EST 2025
Thu Dec 04 04:08:41 EST 2025
Tue Aug 27 03:07:59 EDT 2024
Fri Aug 29 09:58:37 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords Spatial PCA
Spatial Lag
FALSE FALSE
NA NA NA
GWR Model
GWR Coefficient
Inverse Distance Matrix
MBB
OLS Estimate
BP Test
SDM Model
Point Pattern
Marked Point Pattern
ESRI Shapefile
NA NA NA NA
Spatial Weights
Spatial Weights Matrix
GWR
Min 1Q Median 3Q Max
FALSE FALSE FALSE FALSE FALSE
NA NA
Spatial Weights Matrices
NA NA NA NA NA
Market Basket Analysis
FALSE FALSE FALSE
LCCN 2020006869
LCCallNum_Ident HA30.6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a28373-e36f7eb77cb34f6d16f35a1bff3f28c609d59f1458feeab170879b8b8cb5f6b83
Notes Includes bibliographical references (p. 561-576) and index
OCLC 1202475596
ORCID 0000-0003-1065-1790
PQID EBC6357314
PageCount 594
26
620
ParticipantIDs askewsholts_vlebooks_9781000079784
askewsholts_vlebooks_9781000079746
proquest_ebookcentral_EBC6357314
nii_cinii_1130287121408403977
informaworld_taylorfrancisbooks_9781003033219
informaworld_taylorfrancisbooks_10_4324_9781003033219_version2
PublicationCentury 2000
PublicationDate 2021
20201125
2020
2020-11-26
2020-11-25
PublicationDateYYYYMMDD 2021-01-01
2020-11-25
2020-01-01
2020-11-26
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Oxford
PublicationSeriesTitle Routledge Advanced Texts in Economics and Finance
PublicationYear 2021
2020
Publisher Routledge
Taylor and Francis
Taylor & Francis Group
Publisher_xml – name: Routledge
– name: Taylor and Francis
– name: Taylor & Francis Group
SSID ssib059329125
ssib059329126
ssib047166806
ssj0002410379
ssib042417028
Score 2.1971245
Snippet This textbook is a comprehensive introduction to applied spatial data analysis using R. Each chapter walks the reader through a different method, explaining...
This textbook is a comprehensive introduction to applied spatial data analysis, using R. Each chapter walks the reader through a different method, explaining...
SourceID askewsholts
proquest
nii
informaworld
SourceType Aggregation Database
Publisher
SubjectTerms Econometrics
Economic Geography
R (Computer program language)
Spatial analysis (Statistics)
Spatial and Regional Planning
Subtitle Data Analysis in R
TableOfContents 8.6.1.2 Mark connection function -- 8.6.1.3 Analysis of within- and between-type dependence -- 8.6.1.4 Randomisation test of components' independence -- 8.6.2 Analysis under assumption of non-stationarity -- 8.6.2.1 Inhomogeneous K function variations for multitype pattern -- 8.7 Selection and estimation of a proper model for unmarked point pattern -- 8.7.1 Theoretical note -- 8.7.2 Choice of optimal radius -- 8.7.3 Within-industry interaction radius -- 8.7.4 Between-industry interaction radius -- 8.7.5 Estimation and results -- 8.7.6 Model with no between-industry interaction -- 8.7.7 Model with all possible interactions -- 8.8 Spatial interpolation methods - kriging -- 8.8.1 Basic definitions -- 8.8.2 Description of chosen kriging methods -- 8.8.3 Data preparation for the study -- 8.8.4 Estimation and discussion -- 9 Spatial sampling and bootstrapping -- 9.1 Spatial point data - object classes and spatial aggregation -- 9.2 Spatial sampling - randomisation/generation of new points on the surface -- 9.3 Spatial sampling - sampling of sub-samples from existing points -- 9.3.1 Simple sampling -- 9.3.2 The options of the sperrorest:: package -- 9.3.3 Sampling points from areas determined by the k-means algorithm - block bootstrap -- 9.3.4 Sampling points from moving blocks (moving block bootstrap) -- 9.4 Use of spatial sampling and bootstrapping in cross-validation of models -- ### Example ### -- 10 Spatial big data -- 10.1 Examples of big data applications -- 10.2 Spatial big data -- 10.2.1 Spatial data types -- 10.2.2 Challenges related to the use of spatial big data -- 10.2.2.1 Processing of large datasets -- 10.2.2.2 Mapping and reduction -- 10.2.2.3 Spatial data indexing -- 10.3 The sd:: package - simple features -- 10.3.1 sf class - a special data frame -- 10.3.2 Data with POLYGON geometry -- 10.3.3 Data with POINT geometry
10.3.4 Visualisation using the ggplot2:: package
Cover -- Half Title -- Series -- Title -- Copyright -- Contents -- List of figures -- List of tables -- List of contributors -- Introduction -- Statement by the American Statistical Association on statistical significance and p-value - use in the book -- Acknowledgements -- 1 Basic operations in the R software -- 1.1 About the R software -- 1.2 The R software interface -- 1.2.1 R Commander -- 1.2.2 RStudio -- 1.3 Using help -- 1.4 Additional packages -- 1.5 R language - basic features -- 1.6 Defining and loading data -- 1.7 Basic operations on objects -- 1.8 Basic statistics of the dataset -- 1.9 Basic visualisations -- 1.9.1 Scatterplot and line chart -- 1.9.2 Column chart -- 1.9.3 Pie chart -- 1.9.4 Boxplot -- 1.10 Regression in examples -- 2 Data, spatial classes and basic graphics -- 2.1 Loading and basic operations on spatial vector data -- 2.2 Creating, checking and converting spatial classes -- 2.3 Selected colour palettes -- 2.4 Basic contour maps with a colour layer -- Scheme 1 - with colorRampPalette() from the grDevices:: package -- Scheme 2 - with choropleth() from the GISTools:: package -- Scheme 3 - with findInterval() from the base:: package -- Scheme 4 - with findColours() from the classInt:: package -- Scheme 5 - with spplot() from the sp:: package -- 2.5 Basic operations and graphs for point data -- Scheme 1 - with points() from the graphics:: package - locations only -- Scheme 2 - with spplot() from the sp:: package - locations and values -- Scheme 3 - with findInterval() from the base:: package - locations, values, different size of symbols -- 2.6 Basic operations on rasters -- 2.7 Basic operations on grids -- 2.8 Spatial geometries -- 3 Spatial data with Web APIs -- 3.1 What is an application programming interface (API)? -- 3.2 Creating background maps with use of an application programming interface
6.5 Robust regression in the geographically weighted regression model -- 6.6 Geographically and temporally weighted regression -- 7 Spatial unsupervised learning -- 7.1 Clustering of spatial points with k-means, PAM (partitioning around medoids) and CLARA (clustering large applications) algorithms -- ### Example ### -- ### Example ### -- 7.2 Clustering with the density-based spatial clustering of applications with noise algorithm -- ### Example ### -- 7.3 Spatial principal component analysis -- ### Example ### -- 7.4 Spatial drift -- ### Example ### -- 7.5 Spatial hierarchical clustering -- ### Example ### -- ### Example ### -- 7.6 Spatial oblique decision tree -- ### Example ### -- 8 Spatial point pattern analysis and spatial interpolation -- 8.1 Introduction and main definitions -- 8.1.1 Dataset -- 8.1.2 Creation of window and point pattern -- 8.1.3 Marks -- 8.1.4 Covariates -- ### Example ### -- 8.1.5 Duplicated points -- 8.1.6 Projection and rescaling -- 8.2 Intensity-based analysis of unmarked point pattern -- 8.2.1 Quadrat test -- 8.2.2 Tests with spatial covariates -- 8.3 Distance-based analysis of the unmarked point pattern -- 8.3.1 Distance-based measures -- 8.3.1.1 Ripley's K function -- 8.3.1.2 F function -- 8.3.1.3 G function -- 8.3.1.4 J function -- 8.3.1.5 Distance-based complete spatial randomness tests -- 8.3.2 Monte Carlo tests -- 8.3.3 Envelopes -- 8.3.4 Non-graphical tests -- 8.4 Selection and estimation of a proper model for unmarked point pattern -- 8.4.1 Theoretical note -- 8.4.2 Choice of parameters -- 8.4.3 Estimation and results -- 8.4.4 Conclusions -- 8.5 Intensity-based analysis of marked point pattern -- 8.5.1 Segregation test -- 8.6 Correlation and spacing analysis of the marked point pattern -- 8.6.1 Analysis under assumption of stationarity -- 8.6.1.1 K function variations for multitype pattern
5.1 Added value from spatial modelling and classes of models -- 5.2 Basic cross-sectional models -- 5.2.1 Estimation -- ### Example ### -- 5.2.2 Quality assessment of spatial models -- 5.2.2.1 Information criteria and pseudo-R2 in assessing model fit -- 5.2.2.2 Test for heteroscedasticity of model residuals -- 5.2.2.3 Residual autocorrelation tests -- 5.2.2.4 Lagrange multiplier tests for model type selection -- 5.2.2.5 Likelihood ratio and Wald tests for model restrictions -- 5.2.3 Selection of spatial weights matrix and modelling of diffusion strength -- 5.2.4 Forecasts in spatial models -- 5.2.5 Causality -- 5.3 Selected specifications of cross-sectional spatial models -- 5.3.1 Unidirectional spatial interaction models -- 5.3.2 Cumulative models -- 5.3.3 Bootstrapped models for big data -- ### Example ### -- 5.3.4 Models for grid data -- ### Example ### -- 5.4 Spatial panel models -- ### Example### -- 6 Geographically weighted regression - modelling spatial heterogeneity -- 6.1 Geographically weighted regression -- 6.2 Basic estimation of geographically weighted regression model -- 6.2.1 Estimation of the reference ordinary least squares model -- 6.2.2 Choosing the optimal bandwidth for a dataset -- 6.2.3 Local geographically weighted statistics -- 6.2.4 Geographically weighted regression estimation -- 6.2.5 Basic diagnostic tests of the geographically weighted regression model -- 6.2.6 Testing the significance of parameters in geographically weighted regression -- 6.2.7 Selection of the optimal functional form of the model -- 6.2.8 Geographically weighted regression with heteroscedastic random error -- 6.3 The problem of collinearity in geographically weighted regression models -- 6.3.1 Diagnosing collinearity in geographically weighted regression -- 6.4 Mixed geographically weighted regression
3.3 Ways to visualise spatial data - maps for point and regional data -- Scheme 1 - with bubbleMap() from the RgoogleMaps:: package -- Scheme 2 - with ggmap() from the ggmap:: package -- Scheme 3 - with PlotOnStaticMap() from the RgoogleMaps:: package -- Scheme 4 - with RGoogleMaps:: GetMap() and conversion of staticMap into a raster -- 3.4 Spatial data in vector format - example of the OSM database -- 3.5 Access to non-spatial internet databases and resources via application programming interface - examples -- 3.6 Geocoding of data -- 4 Spatial weights matrix, distance measurement, tessellation, spatial statistics -- 4.1 Introduction to spatial data analysis -- 4.2 Spatial weights matrix -- 4.2.1 General framework for creating spatial weights matrices -- 4.2.2 Selection of a neighbourhood matrix -- 4.2.3 Neighbourhood matrices according to the contiguity criterion -- 4.2.4 Matrix of k nearest neighbours (knn) -- 4.2.5 Matrix based on distance criterion (neighbours in a radius of d km) -- 4.2.6 Inverse distance matrix -- 4.2.7 Summarising and editing spatial weights matrix -- 4.2.8 Spatial lags and higher-order neighbourhoods -- 4.2.9 Creating weights matrix based on group membership -- ### Example ### -- ### Example ### -- 4.3 Distance measurement and spatial aggregation -- ### Example ### -- 4.4 Tessellation -- 4.5 Spatial statistics -- 4.5.1 Global statistics -- 4.5.1.1 Global Moran's I statistics -- 4.5.1.2 Global Geary's C statistics -- 4.5.1.3 Join-count statistics -- 4.5.2 Local spatial autocorrelation statistics -- 4.5.2.2 Local Moran's I statistics (local indicator of spatial association) -- 4.5.2.3 Local Geary's C statistics -- 4.5.2.4 Local Getis-Ord Gi statistics -- 4.5.2.5 Local spatial heteroscedasticity -- 4.6 Spatial cross-correlations for two variables -- 4.7 Correlogram -- 5 Applied spatial econometrics
Title Applied Spatial Statistics and Econometrics
URI https://www.taylorfrancis.com/books/9781003033219
https://www.taylorfrancis.com/books/9781000079784
https://cir.nii.ac.jp/crid/1130287121408403977
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6357314
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781000079746
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781000079784
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB3RhUN74lMEKLIQ14g4dmKHA4KuipCKKkRLVXGJ4sSWoqK02iyr0l_PTOJkN8uhcOBi7Xq9duKX2DPjmTcAr63lhU3LJLQijUKZqCjULqtCEWmH270si47x5uyzOj7W5-fZF5-0tO3SCaim0dfX2dV_hRrrEGwKnf0HuMdOsQI_I-hYIuxYbknE41fvb-wFypacpLswEIpcGGmYbReCTAm0sIIMAeQcir94UpK6WfsOHl1elTe4-l34eLFlsbj51afZHiwEMd-yEExdiwbVEXcu1CQi1SdR2V5Iiaev953gtAwIMSxsU27qgzmliEl1IndgR6Wo_N798O3o-8lo5UL5IBIq647J_Xixpz0ax--ZT2nEN5Px9mCvaC_wZnEbWLZbVLIoCjR1_ccG2kkFp_dhRpEiD-CObR7C7sk43Y_gvceCeSzYGguGWLBNLNhbRkiwAQlWN-zrYzj7eHg6_xT6XBVhQfxBgp51p6xRqjRCurTiqRNJwY1zwsW6TKOsSjLHZaKdtYXhKtIqM9ro0iQuNVo8gVlz2dinwBIljbEo1zlJmVCMtsopVwmNr04kXBXAq42JyVc_unP1Nu9nD4U-1BHTv2ikZQDvNic1X3ZWItendOnbo5JI0OQTaPJVb8yNAwhv62DyxwD2Eba8rKnkdGiOCnuMSr6WEakiAbAB0Ly7YO-inB8ezIk5UXD57JYunsPu-iV4AbPl4qfdh3vlCmFevPQP6G9LJGfM
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Applied+spatial+statistics+and+econometrics+%3A+data+analysis+in+R&rft.au=Kopczewska%2C+Katarzyna&rft.date=2021-01-01&rft.pub=Routledge&rft.isbn=9780367470777&rft_id=info:doi/10.4324%2F9781003033219&rft.externalDocID=BC05156854
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97810000%2F9781000079746.jpg
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97810000%2F9781000079784.jpg