Managing GPU Concurrency in Heterogeneous Architectures
Heterogeneous architectures consisting of general-purpose CPUs and throughput-optimized GPUs are projected to be the dominant computing platforms for many classes of applications. The design of such systems is more complex than that of homogeneous architectures because maximizing resource utilizatio...
Gespeichert in:
| Veröffentlicht in: | 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture S. 114 - 126 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.12.2014
|
| Schlagworte: | |
| ISSN: | 1072-4451 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Heterogeneous architectures consisting of general-purpose CPUs and throughput-optimized GPUs are projected to be the dominant computing platforms for many classes of applications. The design of such systems is more complex than that of homogeneous architectures because maximizing resource utilization while minimizing shared resource interference between CPU and GPU applications is difficult. We show that GPU applications tend to monopolize the shared hardware resources, such as memory and network, because of their high thread-level parallelism (TLP), and discuss the limitations of existing GPU-based concurrency management techniques when employed in heterogeneous systems. To solve this problem, we propose an integrated concurrency management strategy that modulates the TLP in GPUs to control the performance of both CPU and GPU applications. This mechanism considers both GPU core state and system-wide memory and network congestion information to dynamically decide on the level of GPU concurrency to maximize system performance. We propose and evaluate two schemes: one (CM-CPU) for boosting CPU performance in the presence of GPU interference, the other (CM-BAL) for improving both CPU and GPU performance in a balanced manner and thus overall system performance. Our evaluations show that the first scheme improves average CPU performance by 24%, while reducing average GPU performance by 11%. The second scheme provides 7% average performance improvement for both CPU and GPU applications. We also show that our solution allows the user to control performance trade-offs between CPUs and GPUs. |
|---|---|
| AbstractList | Heterogeneous architectures consisting of general-purpose CPUs and throughput-optimized GPUs are projected to be the dominant computing platforms for many classes of applications. The design of such systems is more complex than that of homogeneous architectures because maximizing resource utilization while minimizing shared resource interference between CPU and GPU applications is difficult. We show that GPU applications tend to monopolize the shared hardware resources, such as memory and network, because of their high thread-level parallelism (TLP), and discuss the limitations of existing GPU-based concurrency management techniques when employed in heterogeneous systems. To solve this problem, we propose an integrated concurrency management strategy that modulates the TLP in GPUs to control the performance of both CPU and GPU applications. This mechanism considers both GPU core state and system-wide memory and network congestion information to dynamically decide on the level of GPU concurrency to maximize system performance. We propose and evaluate two schemes: one (CM-CPU) for boosting CPU performance in the presence of GPU interference, the other (CM-BAL) for improving both CPU and GPU performance in a balanced manner and thus overall system performance. Our evaluations show that the first scheme improves average CPU performance by 24%, while reducing average GPU performance by 11%. The second scheme provides 7% average performance improvement for both CPU and GPU applications. We also show that our solution allows the user to control performance trade-offs between CPUs and GPUs. |
| Author | Loh, Gabriel H. Jog, Adwait Ausavarungnirun, Rachata Kandemir, Mahmut T. Mutlu, Onur Kayiran, Onur Das, Chita R. Nachiappan, Nachiappan Chidambaram |
| Author_xml | – sequence: 1 givenname: Onur surname: Kayiran fullname: Kayiran, Onur email: onur@cse.psu.edu organization: Pennsylvania State Univ., University Park, PA, USA – sequence: 2 givenname: Nachiappan Chidambaram surname: Nachiappan fullname: Nachiappan, Nachiappan Chidambaram email: nachi@cse.psu.edu organization: Pennsylvania State Univ., University Park, PA, USA – sequence: 3 givenname: Adwait surname: Jog fullname: Jog, Adwait email: adwait@cse.psu.edu organization: Pennsylvania State Univ., University Park, PA, USA – sequence: 4 givenname: Rachata surname: Ausavarungnirun fullname: Ausavarungnirun, Rachata email: rachata@cmu.edu organization: Carnegie Mellon Univ., Pittsburgh, PA, USA – sequence: 5 givenname: Mahmut T. surname: Kandemir fullname: Kandemir, Mahmut T. email: kandemir@cse.psu.edu organization: Pennsylvania State Univ., University Park, PA, USA – sequence: 6 givenname: Gabriel H. surname: Loh fullname: Loh, Gabriel H. email: gabriel.loh@amd.com – sequence: 7 givenname: Onur surname: Mutlu fullname: Mutlu, Onur email: onur@cmu.edu organization: Carnegie Mellon Univ., Pittsburgh, PA, USA – sequence: 8 givenname: Chita R. surname: Das fullname: Das, Chita R. email: das@cse.psu.edu organization: Pennsylvania State Univ., University Park, PA, USA |
| BookMark | eNotzr1OwzAUQGEjFYm2dGRiyQsk3Gs7jj1WEbSVWhUhOlf-uQlB4CAnGfr2IJXpbJ_Ogs1iH4mxB4QCEczTYVe_HQsOKAvFb9gCZWWMMkbzGZsjVDyXssQ7thqGTwBApSRKMWfVwUbbdrHNNq-nrO6jn1Ki6C9ZF7MtjZT6liL105Ctk__oRvLjlGi4Z7eN_Rpo9d8lO708v9fbfH_c7Or1Prdc8zE3PrhGlGRC8EFZ9H8TOjgttDUOPHkCjUFWAA2VjjvjUCvLG8O9RgtSLNnj1e2I6PyTum-bLucKEIXm4hcl0EgF |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/MICRO.2014.62 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 1479969982 9781479969982 |
| EndPage | 126 |
| ExternalDocumentID | 7011382 |
| Genre | orig-research |
| GroupedDBID | -~X 123 29O 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADZIZ AFFNX ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-a282t-9cdbf35e9ddcd6a1c4518db838a9b0cece081d4700fe5b2b9b186a2f92c81a043 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 58 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000365531100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1072-4451 |
| IngestDate | Wed Aug 27 01:52:26 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a282t-9cdbf35e9ddcd6a1c4518db838a9b0cece081d4700fe5b2b9b186a2f92c81a043 |
| OpenAccessLink | https://figshare.com/articles/journal_contribution/Managing_GPU_Concurrency_in_Heterogeneous_Architectures/6468998 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_7011382 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-Dec. |
| PublicationDateYYYYMMDD | 2014-12-01 |
| PublicationDate_xml | – month: 12 year: 2014 text: 2014-Dec. |
| PublicationDecade | 2010 |
| PublicationTitle | 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture |
| PublicationTitleAbbrev | MICRO |
| PublicationYear | 2014 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001664143 ssj0008695 |
| Score | 2.2117774 |
| Snippet | Heterogeneous architectures consisting of general-purpose CPUs and throughput-optimized GPUs are projected to be the dominant computing platforms for many... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 114 |
| SubjectTerms | Bandwidth Central Processing Unit Computer architecture concurrency Concurrent computing CPU-GPU GPUs Graphics processing units heterogeneous architectures Resource management scheduling System performance thread-level parallelism |
| Title | Managing GPU Concurrency in Heterogeneous Architectures |
| URI | https://ieeexplore.ieee.org/document/7011382 |
| WOSCitedRecordID | wos000365531100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA61ePBUtRV3cvBo2plkJstRxNpTLWKht5LlBXqZSjfw35uk0-XgxVsIBPJelseXvPd9CD2Bp1x6aggABIAifUaUE5R4aaQpOTNUuiQ2IYZDOZmoUQM972thwpiUfAbd2Ex_-W5u1_GprCfCZmQyXLgnQvBtrdbhPYXzIlHV1bew5ElxJaAbSiIJ14Ffsxfs-_yIWV1FN4rkHKmqpKDSb_1vOueoc6jOw6N93LlADaguUWsnz4Dr09pGYqdBhN9HYxwG28TFZH_wrMKDmAYzD7sHAvTHL0ffCcsOGvffvl4HpNZJIDoAphVR1hnPSlDOWcd1boO50hnJpFYms2AhxH1XiCzzUBpqlMkl19QramWus4JdoWY1r-Aa4TKY5EomnHBQBKSmLGWlzzV47w1ofoPa0Q_T7y0VxrR2we3f3XfoLHp5m_1xj5qrxRoe0KndrGbLxWNav19tXppW |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5KFfRUtRXf5uDRbXezu9nkKGKtWGuRFnorm2QCvWxLH4L_3iTdPg5evIVAIDN5DF8y830AD2go44bKABEtQOEmDITOaGC45DJlsaRce7GJrNfjo5HoV-BxWwtjx_jkM2y6pv_L11O1ck9lrcxuxpjbC_cgTRIarqu1di8qjCWerK68hznzmisW39DA0XDtGDZb1sKvT5fXlTSdTM6erooPK-3a_yZ0Ao1dfR7pbyPPKVSwOIPaRqCBlOe1DtlGhYi89ofEDlaejUn9kElBOi4RZmr3D1rwT572PhQWDRi2XwbPnaBUSghyC5mWgVBamjhFobXSLI-UNZdryWOeCxkqVGgjv06yMDSYSiqFjDjLqRFU8SgPk_gcqsW0wAsgqTVJp3GmM42JxWpC0Tg1UY7GGIk5u4S688N4tibDGJcuuPq7-x6OOoOP7rj71nu_hmPn8XUuyA1Ul_MV3sKh-l5OFvM7v5a_p8qdnQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2014+47th+Annual+IEEE%2FACM+International+Symposium+on+Microarchitecture&rft.atitle=Managing+GPU+Concurrency+in+Heterogeneous+Architectures&rft.au=Kayiran%2C+Onur&rft.au=Nachiappan%2C+Nachiappan+Chidambaram&rft.au=Jog%2C+Adwait&rft.au=Ausavarungnirun%2C+Rachata&rft.date=2014-12-01&rft.pub=IEEE&rft.issn=1072-4451&rft.spage=114&rft.epage=126&rft_id=info:doi/10.1109%2FMICRO.2014.62&rft.externalDocID=7011382 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-4451&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-4451&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-4451&client=summon |