Low-frequency noise suppressing of desert seismic data by improved nonlinear autoregressive with external input neural network

Low-frequency signal and noise are the main components of seismic data in Northwest China desert area. To remove noise and preserve data details, we introduce a method of nonlinear autoregressive with external input neural network (NARX) which is based on recent developments in nonlinear time series...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Exploration geophysics (Melbourne) Ročník 53; číslo 1; s. 66 - 76
Hlavní autoři: Li, Guanghui, Lu, Xuan, Liang, Meiyan, Feng, Zhiqiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis 02.01.2022
Témata:
ISSN:0812-3985, 1834-7533
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Low-frequency signal and noise are the main components of seismic data in Northwest China desert area. To remove noise and preserve data details, we introduce a method of nonlinear autoregressive with external input neural network (NARX) which is based on recent developments in nonlinear time series prediction and improve its performance according to signal detection theory. The input of NARX is a noisy seismic signal, the output is original predicted background noise, and then a threshold is set for the output to eliminate the waveform distortions. The residual error of the input and the output is filtered signal. We test the proposed method on synthetic and field seismic data and compare it with some conventional filtering methods (wavelet denoising method, f-x filter and complex diffusion filtering). The results prove that the proposed method can greatly attenuate low-frequency noise, and preserve data details as completely as possible.
ISSN:0812-3985
1834-7533
DOI:10.1080/08123985.2021.1896342