Performance evaluation of boosting machine learning algorithms for lithofacies classification in heterogeneous carbonate reservoirs

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine and petroleum geology Jg. 145; S. 105886
Hauptverfasser: Al-Mudhafar, Watheq J., Abbas, Mohammed A., Wood, David A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.11.2022
ISSN:0264-8172
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
ArticleNumber 105886
Author Abbas, Mohammed A.
Wood, David A.
Al-Mudhafar, Watheq J.
Author_xml – sequence: 1
  givenname: Watheq J.
  orcidid: 0000-0002-5327-8300
  surname: Al-Mudhafar
  fullname: Al-Mudhafar, Watheq J.
– sequence: 2
  givenname: Mohammed A.
  surname: Abbas
  fullname: Abbas, Mohammed A.
– sequence: 3
  givenname: David A.
  surname: Wood
  fullname: Wood, David A.
BookMark eNqFkL9OwzAQhz0UibbwDPgFUmwncdyBAVX8qVQJhu7RxTmnrhK7st1KzLw4KUUMLEx3-t19J903IxPnHRJyx9mCMy7v94sBwgFTh34hmBBjWiolJ2TKhCwyxStxTWYx7hlj1ZLxKfl8x2B8GMBppHiC_gjJeke9oY33MVnX0QH0zjqkPUJw5wD6zgebdkOkI0v7sfUGtMVIdQ8xWmP15Yx1dIcJg-_QoT-OcwiNd5CQBowYTt6GeEOuDPQRb3_qnGyfn7ar12zz9rJePW4yEIqlbJkbLqRELJRpTctU2yAvoGENq1TRClHmXAopGOZlhTguqEZyKAuuy6UW-ZxUl7M6-BgDmvoQ7Ojro-asPuur9_Wvvvqsr77oG8mHP6S26fvBFMD2__Jf8lWEdg
CitedBy_id crossref_primary_10_1016_j_jece_2024_112210
crossref_primary_10_1007_s12145_025_01745_9
crossref_primary_10_1038_s41598_025_95490_0
crossref_primary_10_3390_s24124013
crossref_primary_10_1016_j_cageo_2024_105735
crossref_primary_10_1109_ACCESS_2023_3349216
crossref_primary_10_1007_s12145_024_01515_z
crossref_primary_10_1016_j_est_2022_106150
crossref_primary_10_1038_s41598_025_86088_7
crossref_primary_10_1007_s11600_025_01692_5
crossref_primary_10_1109_ACCESS_2024_3507569
crossref_primary_10_1007_s13369_025_10511_4
crossref_primary_10_1190_geo2024_0352_1
crossref_primary_10_1016_j_aiig_2025_100121
crossref_primary_10_1007_s12145_024_01581_3
crossref_primary_10_1144_petgeo2023_067
crossref_primary_10_1007_s13369_025_10270_2
crossref_primary_10_1016_j_marpetgeo_2023_106168
crossref_primary_10_1038_s41598_023_49080_7
crossref_primary_10_1152_ajpgi_00139_2024
crossref_primary_10_1007_s11770_025_1215_y
crossref_primary_10_1002_ese3_2073
crossref_primary_10_1016_j_marpetgeo_2024_107263
crossref_primary_10_1038_s41598_023_40904_0
crossref_primary_10_1186_s40517_024_00323_4
crossref_primary_10_1007_s13146_024_01042_4
crossref_primary_10_1016_j_heliyon_2023_e20242
crossref_primary_10_1615_JPorMedia_2024052284
crossref_primary_10_1190_geo2022_0770_1
crossref_primary_10_1002_ese3_1579
crossref_primary_10_1007_s12145_023_01129_x
crossref_primary_10_3389_feart_2023_1200913
crossref_primary_10_1007_s12145_023_01099_0
crossref_primary_10_1016_j_istruc_2024_107882
crossref_primary_10_1016_j_engeos_2024_100341
crossref_primary_10_1016_j_marpetgeo_2023_106419
crossref_primary_10_1038_s41598_025_98789_0
crossref_primary_10_1515_geo_2022_0465
crossref_primary_10_3389_fmars_2023_1055843
crossref_primary_10_1016_j_jafrearsci_2025_105631
crossref_primary_10_2118_217466_PA
crossref_primary_10_1016_j_jappgeo_2023_104990
crossref_primary_10_3389_feart_2023_1095611
crossref_primary_10_3390_app132412978
crossref_primary_10_3390_pr12010125
Cites_doi 10.1190/INT-2018-0245.1
10.1190/INT-2015-0044.1
10.1007/s42979-021-00592-x
10.24996/ijs.2019.60.12.15
10.1016/j.jmva.2010.06.017
10.2113/geoarabia1801139
10.1007/s40808-017-0277-0
10.1007/s13146-020-00583-8
10.1007/s13202-017-0360-0
10.1016/j.sedgeo.2020.105790
10.1109/TGRS.2020.2981687
10.2136/sssaj2007.0241
10.1007/s11004-019-09838-0
10.1144/SP370.14
10.1111/j.1475-2743.2010.00305.x
10.1016/j.jafrearsci.2020.103826
10.1023/A:1022648800760
10.1016/j.marpetgeo.2018.12.022
10.1016/j.cageo.2020.104475
10.1111/j.1747-5457.1998.tb00646.x
10.1088/1742-2132/8/4/011
10.1016/S0167-9473(01)00065-2
10.1007/s13146-017-0388-8
10.1016/j.petrol.2021.109463
10.1007/s12182-020-00474-6
10.1016/j.marpetgeo.2020.104720
10.2113/geoarabia140491
10.1016/j.asej.2020.01.010
10.1007/s12145-022-00829-0
10.1016/j.marpetgeo.2020.104415
10.1016/j.marpetgeo.2020.104687
10.1016/j.marpetgeo.2019.07.026
10.1007/s10596-021-10033-6
10.1016/B978-0-444-63529-7.00016-X
10.1007/s13146-021-00746-1
10.1145/2990508
10.1144/GSL.SP.1985.018.01.03
10.1214/aos/1016218223
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1016/j.marpetgeo.2022.105886
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
ExternalDocumentID 10_1016_j_marpetgeo_2022_105886
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9DU
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACLVX
ACRLP
ACRPL
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CITATION
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAC
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
WH7
WUQ
XPP
ZMT
ZY4
~02
~G-
~HD
ID FETCH-LOGICAL-a280t-93f1266ee48fdfd08dbe14ab0b0784d2253162620e357eed088b61a541c59c23
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862135100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0264-8172
IngestDate Sat Nov 29 07:19:31 EST 2025
Tue Nov 18 22:20:41 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a280t-93f1266ee48fdfd08dbe14ab0b0784d2253162620e357eed088b61a541c59c23
ORCID 0000-0002-5327-8300
ParticipantIDs crossref_primary_10_1016_j_marpetgeo_2022_105886
crossref_citationtrail_10_1016_j_marpetgeo_2022_105886
PublicationCentury 2000
PublicationDate 2022-11-00
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-00
PublicationDecade 2020
PublicationTitle Marine and petroleum geology
PublicationYear 2022
References Siddharth (10.1016/j.marpetgeo.2022.105886_bib72) 2020
Wood (10.1016/j.marpetgeo.2022.105886_bib81) 2019; 110
Anderton (10.1016/j.marpetgeo.2022.105886_bib16) 1985; 18
Miall (10.1016/j.marpetgeo.2022.105886_bib53) 1990
Middleton (10.1016/j.marpetgeo.2022.105886_bib54) 1973; 84
Long (10.1016/j.marpetgeo.2022.105886_bib47) 2006
Amaefule (10.1016/j.marpetgeo.2022.105886_bib14) 1993
Dunham (10.1016/j.marpetgeo.2022.105886_bib29) 1962
Mirkes (10.1016/j.marpetgeo.2022.105886_bib55) 2011
Koeshidayatullah (10.1016/j.marpetgeo.2022.105886_bib41) 2020; 122
Abbas (10.1016/j.marpetgeo.2022.105886_bib1) 2019
Gonulalan (10.1016/j.marpetgeo.2022.105886_bib34) 2010
Al-Ali (10.1016/j.marpetgeo.2022.105886_bib5) 2019
Tang (10.1016/j.marpetgeo.2022.105886_bib74) 2008
Walker (10.1016/j.marpetgeo.2022.105886_bib78) 1992
Nanjo (10.1016/j.marpetgeo.2022.105886_bib59) 2019
Tuszynski (10.1016/j.marpetgeo.2022.105886_bib76)
Gressly (10.1016/j.marpetgeo.2022.105886_bib36) 1838; 2
He (10.1016/j.marpetgeo.2022.105886_bib39) 2019; 101
Pan (10.1016/j.marpetgeo.2022.105886_bib60) 2021; 208
Gu (10.1016/j.marpetgeo.2022.105886_bib37) 2021; 36
Al-Mudhafar (10.1016/j.marpetgeo.2022.105886_bib10) 2020
Al Moqbel (10.1016/j.marpetgeo.2022.105886_bib4) 2011; 8
Moreton (10.1016/j.marpetgeo.2022.105886_bib57) 2015; 68
Pires (10.1016/j.marpetgeo.2022.105886_bib61) 2010; 101
Halotel (10.1016/j.marpetgeo.2022.105886_bib38) 2020; 52
Al-Mudhafar (10.1016/j.marpetgeo.2022.105886_bib8) 2017; 7
dos Anjos (10.1016/j.marpetgeo.2022.105886_bib27) 2021; 25
Zhao (10.1016/j.marpetgeo.2022.105886_bib85) 2015; 3
Zong (10.1016/j.marpetgeo.2022.105886_bib88) 2017; 8
Lucia (10.1016/j.marpetgeo.2022.105886_bib48) 1999
Tharwat (10.1016/j.marpetgeo.2022.105886_bib75) 2018
Abbas (10.1016/j.marpetgeo.2022.105886_bib2) 2019; 60
Alsharhan (10.1016/j.marpetgeo.2022.105886_bib13) 1997
Leverett (10.1016/j.marpetgeo.2022.105886_bib43) 1941
Liu (10.1016/j.marpetgeo.2022.105886_bib45) 2020; 58
Chen (10.1016/j.marpetgeo.2022.105886_bib24) 2016
Liu (10.1016/j.marpetgeo.2022.105886_bib44) 2020; 410
Al-Mudhafar (10.1016/j.marpetgeo.2022.105886_bib7) 2016
De Ribet (10.1016/j.marpetgeo.2022.105886_bib26) 2018
Reading (10.1016/j.marpetgeo.2022.105886_bib66) 1996
Zhao (10.1016/j.marpetgeo.2022.105886_bib86) 2022
Abdulaziz (10.1016/j.marpetgeo.2022.105886_bib3) 2020; 11
Meyer (10.1016/j.marpetgeo.2022.105886_bib52)
Friedman (10.1016/j.marpetgeo.2022.105886_bib33) 2002; 38
Cantrell (10.1016/j.marpetgeo.2022.105886_bib89) 2020; 118
Ya (10.1016/j.marpetgeo.2022.105886_bib84) 2016; 43
Zheng (10.1016/j.marpetgeo.2022.105886_bib87) 2021; 123
Jalabert (10.1016/j.marpetgeo.2022.105886_bib40) 2010; 26
Liu (10.1016/j.marpetgeo.2022.105886_bib46) 2020; 17
Breiman (10.1016/j.marpetgeo.2022.105886_bib20) 1984
Pires de Lima (10.1016/j.marpetgeo.2022.105886_bib62) 2019; 7
Bressan (10.1016/j.marpetgeo.2022.105886_bib21) 2020; 139
Sarker (10.1016/j.marpetgeo.2022.105886_bib69) 2021; 2
Lee (10.1016/j.marpetgeo.2022.105886_bib42) 1999
Ameur-Zaimeche (10.1016/j.marpetgeo.2022.105886_bib15) 2020; 166
Aqrawi (10.1016/j.marpetgeo.2022.105886_bib17) 1998; 21
R Development Core Team (10.1016/j.marpetgeo.2022.105886_bib65) 2006
Duan (10.1016/j.marpetgeo.2022.105886_bib28) 2020; 35
Friedman (10.1016/j.marpetgeo.2022.105886_bib32) 2000; 28
Al-Mudhafar (10.1016/j.marpetgeo.2022.105886_bib12) 2019
Embry (10.1016/j.marpetgeo.2022.105886_bib31) 1971; 19
Bergstra (10.1016/j.marpetgeo.2022.105886_bib18) 2012; 13
Bestagini (10.1016/j.marpetgeo.2022.105886_bib19) 2017; 2137
Rubing (10.1016/j.marpetgeo.2022.105886_bib68) 2019
Al-Ameri (10.1016/j.marpetgeo.2022.105886_bib6) 2009; 14
Woan (10.1016/j.marpetgeo.2022.105886_bib80) 2012
Greenwell (10.1016/j.marpetgeo.2022.105886_bib35)
Pittman (10.1016/j.marpetgeo.2022.105886_bib63) 1992
Wang (10.1016/j.marpetgeo.2022.105886_bib79) 2012
Martin (10.1016/j.marpetgeo.2022.105886_bib51) 2009; 73
Moradi (10.1016/j.marpetgeo.2022.105886_bib56) 2019; 34
Chatterjee (10.1016/j.marpetgeo.2022.105886_bib23)
El-Sebakhy (10.1016/j.marpetgeo.2022.105886_bib30) 2010
Mahdi (10.1016/j.marpetgeo.2022.105886_bib49) 2013; 18
Rostamian (10.1016/j.marpetgeo.2022.105886_bib67) 2022; 208
Murphy (10.1016/j.marpetgeo.2022.105886_bib58) 2006
Van Bellen (10.1016/j.marpetgeo.2022.105886_bib77) 1959
Shekar (10.1016/j.marpetgeo.2022.105886_bib71) 2019
Wood (10.1016/j.marpetgeo.2022.105886_bib82) 2022
Burchette (10.1016/j.marpetgeo.2022.105886_bib22) 2012; 370
Probst (10.1016/j.marpetgeo.2022.105886_bib64) 2019; 20
Sutton (10.1016/j.marpetgeo.2022.105886_bib73) 2012
Al-Mudhafar (10.1016/j.marpetgeo.2022.105886_bib9) 2017; 3
Chen (10.1016/j.marpetgeo.2022.105886_bib25)
Schapire (10.1016/j.marpetgeo.2022.105886_bib70) 1990; 5
Marc (10.1016/j.marpetgeo.2022.105886_bib50) 2017; 112
Wu (10.1016/j.marpetgeo.2022.105886_bib83) 2019; 17
References_xml – volume: 7
  start-page: SF27
  issue: 3
  year: 2019
  ident: 10.1016/j.marpetgeo.2022.105886_bib62
  article-title: Convolutional neural networks as aid in core lithofacies classification
  publication-title: Interpretation
  doi: 10.1190/INT-2018-0245.1
– volume: 3
  start-page: SAE29
  issue: 4
  year: 2015
  ident: 10.1016/j.marpetgeo.2022.105886_bib85
  article-title: A comparison of classification techniques for seismic facies recognition
  publication-title: Interpretation
  doi: 10.1190/INT-2015-0044.1
– volume: 2
  start-page: 160
  year: 2021
  ident: 10.1016/j.marpetgeo.2022.105886_bib69
  article-title: Machine learning: algorithms, real-world applications and research directions
  publication-title: SN COMPUT. SCI.
  doi: 10.1007/s42979-021-00592-x
– year: 1999
  ident: 10.1016/j.marpetgeo.2022.105886_bib48
– volume: 17
  start-page: 26
  issue: 1
  year: 2019
  ident: 10.1016/j.marpetgeo.2022.105886_bib83
  article-title: Hyperparameter optimization for machine learning models based on bayesian optimization
  publication-title: J. Electron. Sci. Technol.
– ident: 10.1016/j.marpetgeo.2022.105886_bib76
– volume: 43
  start-page: 136
  issue: 1
  year: 2016
  ident: 10.1016/j.marpetgeo.2022.105886_bib84
  article-title: Geologic features and genesis of the barriers and intercalations in carbonates: a case study of the Cretaceous Mishrif Formation, West Qurna oil field, Iraq
  publication-title: Petrol. Explor. Dev.
– volume: 60
  start-page: 2656
  issue: 12
  year: 2019
  ident: 10.1016/j.marpetgeo.2022.105886_bib2
  article-title: Reservoir units of Mishrif Formation in Majnoon oil field, southern Iraq
  publication-title: Iraqi J. Sci.
  doi: 10.24996/ijs.2019.60.12.15
– volume: 101
  start-page: 2464
  issue: 10
  year: 2010
  ident: 10.1016/j.marpetgeo.2022.105886_bib61
  article-title: Projection-pursuit approach to robust linear discriminant analysis
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2010.06.017
– year: 1993
  ident: 10.1016/j.marpetgeo.2022.105886_bib14
  article-title: Enhanced reservoir description: using core and log data to identify hydraulic flow units and predict permeability in uncored intervals/wells
– volume: 18
  start-page: 139
  issue: 1
  year: 2013
  ident: 10.1016/j.marpetgeo.2022.105886_bib49
  article-title: Sedimentological characterization of the mid cretaceous Mishrif reservoir in southern Mesopotamian Basin, Iraq
  publication-title: GeoArabia
  doi: 10.2113/geoarabia1801139
– volume: 3
  start-page: 12
  year: 2017
  ident: 10.1016/j.marpetgeo.2022.105886_bib9
  article-title: Integrating kernel support vector machines for efficient rock facies classification in the main pay of Zubair formation in South Rumaila oil field, Iraq. Model
  publication-title: Earth Syst. Environ.
  doi: 10.1007/s40808-017-0277-0
– ident: 10.1016/j.marpetgeo.2022.105886_bib25
– year: 2019
  ident: 10.1016/j.marpetgeo.2022.105886_bib68
  article-title: New workflow of facies modeling based on deposition study, seismic data and artificial modification: a case study for the Mishrif Formation of the H oilfield, Iraq
– year: 1999
  ident: 10.1016/j.marpetgeo.2022.105886_bib42
  article-title: Electrofacies characterization and permeability predictions in carbonate reservoirs: role of multivariate analysis and nonparametric regression
– volume: 35
  start-page: 1
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105886_bib28
  article-title: Lithology identification and reservoir characteristics of the mixed siliciclastic-carbonate rocks of the lower third member of the Shahejie formation in the south of the Laizhouwan Sag, Bohai Bay Basin, China
  publication-title: Carbonates Evaporites
  doi: 10.1007/s13146-020-00583-8
– year: 2012
  ident: 10.1016/j.marpetgeo.2022.105886_bib79
  article-title: AdaBoost for feature selection, classification and its relation with SVM*, A review
– year: 2019
  ident: 10.1016/j.marpetgeo.2022.105886_bib59
  article-title: Carbonate lithology identification with machine learning
– volume: 7
  start-page: 1023
  year: 2017
  ident: 10.1016/j.marpetgeo.2022.105886_bib8
  article-title: Integrating well log interpretations for lithofacies classification and permeability modeling through advanced machine learning algorithms
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-017-0360-0
– volume: 410
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105886_bib44
  article-title: Automatic identification of fossils and abiotic grains during carbonate microfacies analysis using deep convolutional neural networks
  publication-title: Sediment. Geol.
  doi: 10.1016/j.sedgeo.2020.105790
– year: 2006
  ident: 10.1016/j.marpetgeo.2022.105886_bib47
– year: 2022
  ident: 10.1016/j.marpetgeo.2022.105886_bib86
  article-title: Logging-data-driven permeability prediction in low-permeable sandstones based on machine learning with pattern visualization: a case study in Wenchang A Sag, Pearl River Mouth Basin
  publication-title: J. Petrol. Sci. Eng.
– volume: 58
  start-page: 7269
  issue: 10
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105886_bib45
  article-title: Facies identification based on multikernel relevance vector machine
  publication-title: IEEE Trans. Geosci. Rem. Sens.
  doi: 10.1109/TGRS.2020.2981687
– year: 2012
  ident: 10.1016/j.marpetgeo.2022.105886_bib73
– volume: 20
  start-page: 1
  year: 2019
  ident: 10.1016/j.marpetgeo.2022.105886_bib64
  article-title: Tunability: importance of hyperparameters of machine learning algorithms
  publication-title: J. Mach. Learn. Res.
– volume: 73
  start-page: 485
  year: 2009
  ident: 10.1016/j.marpetgeo.2022.105886_bib51
  article-title: Optimizing pedotransfer functions for estimating soil bulk density using boosted regression trees
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2007.0241
– ident: 10.1016/j.marpetgeo.2022.105886_bib35
– year: 2019
  ident: 10.1016/j.marpetgeo.2022.105886_bib5
  article-title: Improved carbonate reservoir characterization: a case study from a supergiant field in southern of Iraq
– year: 2019
  ident: 10.1016/j.marpetgeo.2022.105886_bib71
  article-title: Grid search-based hyperparameter tuning and classification of microarray cancer data
– volume: 2137
  year: 2017
  ident: 10.1016/j.marpetgeo.2022.105886_bib19
  article-title: A machine learning approach to facies classification using well logs
  publication-title: Proceedings of the SEG International Exposition and 87th Annual Meeting
– volume: 52
  start-page: 5
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105886_bib38
  article-title: Value of geologically derived features in machine learning facies classification
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-019-09838-0
– volume: 370
  start-page: 17
  issue: 1
  year: 2012
  ident: 10.1016/j.marpetgeo.2022.105886_bib22
  article-title: Carbonate rocks and petroleum reservoirs: a geological perspective from the industry
  publication-title: Geol. Soc. Lond. Spec. Publ.
  doi: 10.1144/SP370.14
– year: 2020
  ident: 10.1016/j.marpetgeo.2022.105886_bib72
– volume: 26
  start-page: 516
  year: 2010
  ident: 10.1016/j.marpetgeo.2022.105886_bib40
  article-title: Estimating forest soil bulk density using boosted regression modeling
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.2010.00305.x
– year: 1959
  ident: 10.1016/j.marpetgeo.2022.105886_bib77
– year: 2016
  ident: 10.1016/j.marpetgeo.2022.105886_bib7
  article-title: Applied geostatistical reservoir characterization in R: review and implementation of rock facies classification and prediction algorithms-Part I
– volume: 166
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105886_bib15
  article-title: Lithofacies prediction in non-cored wells from the Sif Fatima oil field (Berkine basin, southern Algeria): a comparative study of multilayer perceptron neural network and cluster analysis-based approaches
  publication-title: J. Afr. Earth Sci.
  doi: 10.1016/j.jafrearsci.2020.103826
– start-page: 159
  year: 1941
  ident: 10.1016/j.marpetgeo.2022.105886_bib43
  article-title: Capillary behavior in porous solids
  publication-title: Transact. AIME
– volume: 5
  start-page: 197
  year: 1990
  ident: 10.1016/j.marpetgeo.2022.105886_bib70
  article-title: The strength of weak learnability
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022648800760
– year: 1997
  ident: 10.1016/j.marpetgeo.2022.105886_bib13
– volume: 101
  start-page: 410
  year: 2019
  ident: 10.1016/j.marpetgeo.2022.105886_bib39
  article-title: Using neural networks and the Markov chain approach for facies analysis and prediction from well logs in the Precipice Sandstone and Evergreen Formation, Surat Basin, Australia
  publication-title: Mar. Petrol. Geol.
  doi: 10.1016/j.marpetgeo.2018.12.022
– volume: 2
  start-page: 1
  year: 1838
  ident: 10.1016/j.marpetgeo.2022.105886_bib36
  article-title: Observations géologiques sur le Jura Soleurois
  publication-title: Neue Denkschriften Der Allgemeinen Shweizerischen Gesellschaft fur die gesammten Naturwissenschaften
– volume: 139
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105886_bib21
  article-title: Evaluation of machine learning methods for lithology classification using geophysical data
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2020.104475
– year: 2018
  ident: 10.1016/j.marpetgeo.2022.105886_bib26
  article-title: Machine learning provides higher-quality insights into facies heterogeneities over complex carbonate reservoirs in a recently developed abu dhabi oilfield, Middle East
– year: 2008
  ident: 10.1016/j.marpetgeo.2022.105886_bib74
  article-title: Improved carbonate reservoir facies classification using artificial neural network method
– volume: 21
  start-page: 57
  issue: 1
  year: 1998
  ident: 10.1016/j.marpetgeo.2022.105886_bib17
  article-title: Mid-cretaceous rudist-bearing carbonates of the Mishrif Formation: an important reservoir sequence in the Mesopotamian Basin, Iraq
  publication-title: J. Petrol. Geol.
  doi: 10.1111/j.1747-5457.1998.tb00646.x
– volume: 8
  start-page: 592
  issue: 4
  year: 2011
  ident: 10.1016/j.marpetgeo.2022.105886_bib4
  article-title: Carbonate reservoir characterization with lithofacies clustering and porosity prediction
  publication-title: J. Geophys. Eng.
  doi: 10.1088/1742-2132/8/4/011
– year: 2006
  ident: 10.1016/j.marpetgeo.2022.105886_bib65
– volume: 38
  start-page: 367
  year: 2002
  ident: 10.1016/j.marpetgeo.2022.105886_bib33
  article-title: Stochastic gradient boosting
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(01)00065-2
– volume: 34
  start-page: 335
  issue: 2
  year: 2019
  ident: 10.1016/j.marpetgeo.2022.105886_bib56
  article-title: Inversion of well logs into rock types, lithofacies and environmental facies, using pattern recognition, a case study of carbonate Sarvak Formation
  publication-title: Carbonates Evaporites
  doi: 10.1007/s13146-017-0388-8
– volume: 208
  year: 2022
  ident: 10.1016/j.marpetgeo.2022.105886_bib67
  article-title: Evaluation of different machine learning frameworks to predict CNL-FDC-PEF logs via hyperparameters optimization and feature selection
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109463
– volume: 17
  start-page: 954
  issue: 4
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105886_bib46
  article-title: Lithofacies identification using support vector machine based on local deep multi-kernel learning
  publication-title: Petrol. Sci.
  doi: 10.1007/s12182-020-00474-6
– volume: 123
  year: 2021
  ident: 10.1016/j.marpetgeo.2022.105886_bib87
  article-title: Electrofacies classification of deeply buried carbonate strata using machine learning methods: a case study on ordovician paleokarst reservoirs in Tarim Basin
  publication-title: Mar. Petrol. Geol.
  doi: 10.1016/j.marpetgeo.2020.104720
– year: 1992
  ident: 10.1016/j.marpetgeo.2022.105886_bib78
– volume: 208
  year: 2021
  ident: 10.1016/j.marpetgeo.2022.105886_bib60
  article-title: An optimized XGBoost method for predicting reservoir porosity using petrophysical logs
  publication-title: J. Petrol. Sci. Eng.
– year: 2012
  ident: 10.1016/j.marpetgeo.2022.105886_bib80
  article-title: Improved reservoir characterization using petrophysical classifiers within electrofacies
– year: 2019
  ident: 10.1016/j.marpetgeo.2022.105886_bib1
  article-title: Clustering analysis and flow zone indicator for electrofacies characterization in the upper shale member in luhais oil field, SouthernIraq
– volume: 14
  start-page: 91
  issue: 4
  year: 2009
  ident: 10.1016/j.marpetgeo.2022.105886_bib6
  article-title: Petroleum system analysis of the Mishrif reservoir in the ratawi, Zubair, north and south Rumaila oil fields, southern Iraq
  publication-title: GeoArabia
  doi: 10.2113/geoarabia140491
– volume: 112
  start-page: 88
  issue: C
  year: 2017
  ident: 10.1016/j.marpetgeo.2022.105886_bib50
  article-title: LogitBoost autoregressive networks
  publication-title: Comput. Stat. Data Anal.
– year: 2020
  ident: 10.1016/j.marpetgeo.2022.105886_bib10
– volume: 11
  start-page: 1387
  issue: 4
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105886_bib3
  article-title: Prediction of carbonate diagenesis from well logs using artificial neural network: an innovative technique to understand complex carbonate systems
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2020.01.010
– year: 2022
  ident: 10.1016/j.marpetgeo.2022.105886_bib82
  article-title: Carbonate/siliciclastic lithofacies classification aided by well-log derivative, volatility and sequence boundary attributes combined with machine learning
  publication-title: Earth Science Informatics
  doi: 10.1007/s12145-022-00829-0
– start-page: 108
  year: 1962
  ident: 10.1016/j.marpetgeo.2022.105886_bib29
– volume: 19
  start-page: 730
  issue: 4
  year: 1971
  ident: 10.1016/j.marpetgeo.2022.105886_bib31
  article-title: A late devonian reef tract on northeastern banks Island,Northwest territories
  publication-title: Bull. Can. Petrol. Geol.
– volume: 13
  start-page: 281
  year: 2012
  ident: 10.1016/j.marpetgeo.2022.105886_bib18
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 118
  start-page: 104415
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105886_bib89
  article-title: Depositional and diagenetic controls on reservoir quality: Example from the upper Cretaceous Mishrif Formation of Iraq
  publication-title: Mar. Petrol. Geol.
  doi: 10.1016/j.marpetgeo.2020.104415
– volume: 122
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105886_bib41
  article-title: Fully automated carbonate petrography using deep convolutional neural networks
  publication-title: Mar. Petrol. Geol.
  doi: 10.1016/j.marpetgeo.2020.104687
– year: 1990
  ident: 10.1016/j.marpetgeo.2022.105886_bib53
– year: 2011
  ident: 10.1016/j.marpetgeo.2022.105886_bib55
– year: 2018
  ident: 10.1016/j.marpetgeo.2022.105886_bib75
– volume: 110
  start-page: 347
  year: 2019
  ident: 10.1016/j.marpetgeo.2022.105886_bib81
  article-title: Lithofacies and stratigraphy prediction methodology exploiting an optimized nearest-neighbour algorithm to mine well-log data
  publication-title: Mar. Petrol. Geol.
  doi: 10.1016/j.marpetgeo.2019.07.026
– year: 2010
  ident: 10.1016/j.marpetgeo.2022.105886_bib30
  article-title: Data mining in identifying carbonate litho-facies from well logs based from extreme learning and support vector machines
– year: 1996
  ident: 10.1016/j.marpetgeo.2022.105886_bib66
– year: 2019
  ident: 10.1016/j.marpetgeo.2022.105886_bib12
  article-title: Clustering analysis for improved characterization of carbonate reservoirs in a southern Iraqi oil field
– volume: 25
  start-page: 971
  year: 2021
  ident: 10.1016/j.marpetgeo.2022.105886_bib27
  article-title: Deep learning for lithological classification of carbonate rock micro-CT images
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-021-10033-6
– volume: 68
  start-page: 529
  year: 2015
  ident: 10.1016/j.marpetgeo.2022.105886_bib57
  article-title: Characterizing alluvial architecture of point bars within the McMurray Formation, Alberta, Canada, for improved bitumen resource prediction and recovery
  publication-title: Dev. Sedimentol., Elsevier
  doi: 10.1016/B978-0-444-63529-7.00016-X
– volume: 84
  start-page: 979
  year: 1973
  ident: 10.1016/j.marpetgeo.2022.105886_bib54
– volume: 36
  start-page: 79
  issue: 4
  year: 2021
  ident: 10.1016/j.marpetgeo.2022.105886_bib37
  article-title: Carbonate lithofacies identification using an improved light gradient boosting machine and conventional logs: a demonstration using pre-salt lacustrine reservoirs, Santos Basin
  publication-title: Carbonates Evaporites
  doi: 10.1007/s13146-021-00746-1
– ident: 10.1016/j.marpetgeo.2022.105886_bib23
– volume: 8
  start-page: 1
  issue: 3
  year: 2017
  ident: 10.1016/j.marpetgeo.2022.105886_bib88
  article-title: Learning k for kNN Classification
  publication-title: ACM Transact. Intelligent Syst. Technol.
  doi: 10.1145/2990508
– year: 2006
  ident: 10.1016/j.marpetgeo.2022.105886_bib58
– volume: 18
  start-page: 31
  year: 1985
  ident: 10.1016/j.marpetgeo.2022.105886_bib16
  article-title: Clastic facies models and facies analysis
  publication-title: Geol. Soc. Lond. Spec. Publ.
  doi: 10.1144/GSL.SP.1985.018.01.03
– year: 2010
  ident: 10.1016/j.marpetgeo.2022.105886_bib34
– start-page: 191
  year: 1992
  ident: 10.1016/j.marpetgeo.2022.105886_bib63
  article-title: Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone
  publication-title: AAPG (Am. Assoc. Pet. Geol.) Bull.
– volume: 28
  start-page: 337
  issue: 2
  year: 2000
  ident: 10.1016/j.marpetgeo.2022.105886_bib32
  article-title: Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors)
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1016218223
– ident: 10.1016/j.marpetgeo.2022.105886_bib52
– year: 1984
  ident: 10.1016/j.marpetgeo.2022.105886_bib20
– year: 2016
  ident: 10.1016/j.marpetgeo.2022.105886_bib24
  article-title: XGBoost,: a scalable tree boosting system
SSID ssj0007901
Score 2.5460234
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 105886
Title Performance evaluation of boosting machine learning algorithms for lithofacies classification in heterogeneous carbonate reservoirs
Volume 145
WOSCitedRecordID wos000862135100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 0264-8172
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007901
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECXcpAWaQ9CmLZpu4KE3QYY2WtTRCNIlQIIcDMQ3gRJJy4EtpbYc5N5v6X92KIqUlBZIc-hFMGSQXuaJ8zh8M4PQZ0pkzMEtu8A9qAsMnLss4MIFVz0RHvFEyPOm2UR8cUHn8-RyNPplcmFuV3FZ0ru75Oa_mhrugbFV6uwjzG0nhRvwGowOVzA7XP_J8Je9VICulrcihUCot43Ked0oKIVpGbFw2GpRbZZ1oaszqLzkopIMHvutkyt6rfREzMgiC6WgqeDzhZLP5myTqQi8ar-iIryVOR8ybaKYyi_U9QiEUsWL3dpZiEE0f7pyz3e8YFKrva8UK_3hnI27s6lM552dV4WKtHNnat-7ajVDjTjf3G_DGLAD9m0YQ692wMxc6sfDpTkivcUVqCDVdbP_WPd1COJ6vFaHVvWiSesMgnE3Ylhp-54HtLpEI3m7Tu1EqZoo1RM9QftBTBJYPPen30_nZ9blx0nTZ9v-hoGQ8K_fqUeDenxm9gIdthsRPNUAeolGojxCB73ylEfo2VdtplfoZw9UuAMVriQ2oMItqLABFe5AhWEs7oEKD0GFlyUegApbUOEOVK_R7Mvp7OSb27bvgKederWbhNIH-idERCWX3KM8E37EMi8DWhpxcCShP1H9EERIYqBq4O-yic9I5OckyYPwDdorq1K8RZgBLYZtgC8kDIylbNYdEgpOwD9xJo7RxPyZad6WtlcdVlbpAwY9Rp4deKOruzw05N3jh7xHzzvEf0B79WYnPqKn-W293G4-tVj6DYcNrA0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+boosting+machine+learning+algorithms+for+lithofacies+classification+in+heterogeneous+carbonate+reservoirs&rft.jtitle=Marine+and+petroleum+geology&rft.au=Al-Mudhafar%2C+Watheq+J.&rft.au=Abbas%2C+Mohammed+A.&rft.au=Wood%2C+David+A.&rft.date=2022-11-01&rft.issn=0264-8172&rft.volume=145&rft.spage=105886&rft_id=info:doi/10.1016%2Fj.marpetgeo.2022.105886&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_marpetgeo_2022_105886
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-8172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-8172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-8172&client=summon