Consistent Graph Model Generation with Large Language Models

Graph model generation from natural language requirements is an essential task in software engineering, for which large language models (LLMs) have become increasingly popular. A key challenge is ensuring that the generated graph models are consistent with domain-specific well-formed constraints. LL...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (IEEE/ACM International Conference on Software Engineering Companion. Online) s. 218 - 219
Hlavní autor: Chen, Boqi
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 27.04.2025
Témata:
ISSN:2574-1934
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Graph model generation from natural language requirements is an essential task in software engineering, for which large language models (LLMs) have become increasingly popular. A key challenge is ensuring that the generated graph models are consistent with domain-specific well-formed constraints. LLM-generated graphs are often partially correct due to inconsistency with the constraints, limiting their practical usage. To address this, we propose a novel abstraction-concretization framework motivated by self-consistency for generating consistent models. Our approach first abstracts candidate models into a probabilistic partial model and then concretizes this abstraction into a consistent graph model. Preliminary evaluations on taxonomy generation demonstrate that our method significantly enhances both the consistency and quality of generated graph models.
AbstractList Graph model generation from natural language requirements is an essential task in software engineering, for which large language models (LLMs) have become increasingly popular. A key challenge is ensuring that the generated graph models are consistent with domain-specific well-formed constraints. LLM-generated graphs are often partially correct due to inconsistency with the constraints, limiting their practical usage. To address this, we propose a novel abstraction-concretization framework motivated by self-consistency for generating consistent models. Our approach first abstracts candidate models into a probabilistic partial model and then concretizes this abstraction into a consistent graph model. Preliminary evaluations on taxonomy generation demonstrate that our method significantly enhances both the consistency and quality of generated graph models.
Author Chen, Boqi
Author_xml – sequence: 1
  givenname: Boqi
  surname: Chen
  fullname: Chen, Boqi
  organization: McGill University,Electrical and Computer Engineering,Montreal,Canada
BookMark eNotkE9Lw0AUxFdRsNZ8Aw85eUt8-38XvEiotRDxoJ7Ly-bZRtpNyEbEb29QLzNz-DEDc8nOYh-JsRsOJefgbzfVy6qo-uOAseujMUKLUoDQJQAYe8Iyb72TkmtpnOSnbCG0VQX3Ul2wLKWPGZMCpPJ2we6qPqYuTRSnfD3isM-f-pYO-ZoijTjN_flXN-3zGscdzRp3nziHXyhdsfN3PCTK_n3J3h5Wr9VjUT-vN9V9XaBwMBVcOe2Dtag0NL41oBqggBQ0Jy0EKWeNAeItBkfGITYuYABsOUJDppVLdv3X2xHRdhi7I47f2_kLoeYB-QPqQE9V
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSE-Companion66252.2025.00067
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331536831
EISSN 2574-1934
EndPage 219
ExternalDocumentID 11024280
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-a280t-14859c77a450b9d604b0ecaec51e522e487660e1dac8e68aab8cac0ad1a0be6d3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001554070400055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jun 18 06:01:38 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a280t-14859c77a450b9d604b0ecaec51e522e487660e1dac8e68aab8cac0ad1a0be6d3
PageCount 2
ParticipantIDs ieee_primary_11024280
PublicationCentury 2000
PublicationDate 2025-April-27
PublicationDateYYYYMMDD 2025-04-27
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-27
  day: 27
PublicationDecade 2020
PublicationTitle Proceedings (IEEE/ACM International Conference on Software Engineering Companion. Online)
PublicationTitleAbbrev ICSE-COMPANION
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003203497
Score 2.2898881
Snippet Graph model generation from natural language requirements is an essential task in software engineering, for which large language models (LLMs) have become...
SourceID ieee
SourceType Publisher
StartPage 218
SubjectTerms Constraint optimization
graph model generation
Large language models
Limiting
Natural languages
Probabilistic logic
Software engineering
Taxonomy
Title Consistent Graph Model Generation with Large Language Models
URI https://ieeexplore.ieee.org/document/11024280
WOSCitedRecordID wos001554070400055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20iHhSseI3exBva7f52N2At9KqUEpBhd7KfkxAkFTatL_fmU2sePDgJSQhkOwO4c3M7nuPsdscc3CXQC7yzJUiCyUIl7lUpGASgNIFBVEyf6wnEzObFdOWrB65MAAQN5_BPZ3Gtfyw8GtqlfUQqhBRDFbou1qrhqy1baikCUmt6H121-po9p4HL0PR_Fbkh4OZPjGvEmqiSPXbTiWiyejwn99xxLo_vDw-3SLOMduB6oQ9RM9NDFZV80eSn-bkb_bBG0FpmndOzVY-pj3feGz6k81Dqy57Gw1fB0-i9UQQFl9YC6xe8sJrbbNcuiIomTkJ3oLP-4CpFGD9oZSEfrDegDLWOuOtlzb0rXSgQnrKOtWigjPGjXYYFlUWwbhMObzCmAVbptYHRP70nHVp6PPPRvZi_j3qiz_uX7IDml1aakn0FevUyzVcsz2_qd9Xy5sYrC-e-pdh
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yRT2pOPG3PYi3uKxN0hS8jc0N6xg4YbeRH68gSCdb59_vS1onHjx4KW0ptMmjfO-95Ps-Qm4F5uAmBkEFNwXlrgBquEloAioGKIyTECTz83Q8VrNZNmnI6oELAwBh8xnc-9Owlu8Wdu1bZR2EKkQUhRX6tuA8ZjVda9NSSWIvtpLukrtGSbMz6r30af1jeUcczPU99yr2bRQmfxuqBDwZHPzzSw5J-4eZF002mHNEtqA8Jg_BdRPDVVbRoxegjrzD2XtUS0r7mY98uzXK_a5vPNYdyvqhVZu8DvrT3pA2rghU4wsrivWLyGyaai6YyZxk3DCwGqzoAiZTgBWIlAy6TlsFUmltlNWWadfVzIB0yQlplYsSTkmkUoOBkUXmlOHS4BVGzeki0dYh9idnpO2HPv-ohS_m36M-_-P-DdkbTp_zeT4aP12QfT_TfuElTi9Jq1qu4Yrs2M_qbbW8DoH7Aq97mqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE%2FACM+International+Conference+on+Software+Engineering+Companion.+Online%29&rft.atitle=Consistent+Graph+Model+Generation+with+Large+Language+Models&rft.au=Chen%2C+Boqi&rft.date=2025-04-27&rft.pub=IEEE&rft.eissn=2574-1934&rft.spage=218&rft.epage=219&rft_id=info:doi/10.1109%2FICSE-Companion66252.2025.00067&rft.externalDocID=11024280