Consistent Graph Model Generation with Large Language Models
Graph model generation from natural language requirements is an essential task in software engineering, for which large language models (LLMs) have become increasingly popular. A key challenge is ensuring that the generated graph models are consistent with domain-specific well-formed constraints. LL...
Uloženo v:
| Vydáno v: | Proceedings (IEEE/ACM International Conference on Software Engineering Companion. Online) s. 218 - 219 |
|---|---|
| Hlavní autor: | |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
27.04.2025
|
| Témata: | |
| ISSN: | 2574-1934 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Graph model generation from natural language requirements is an essential task in software engineering, for which large language models (LLMs) have become increasingly popular. A key challenge is ensuring that the generated graph models are consistent with domain-specific well-formed constraints. LLM-generated graphs are often partially correct due to inconsistency with the constraints, limiting their practical usage. To address this, we propose a novel abstraction-concretization framework motivated by self-consistency for generating consistent models. Our approach first abstracts candidate models into a probabilistic partial model and then concretizes this abstraction into a consistent graph model. Preliminary evaluations on taxonomy generation demonstrate that our method significantly enhances both the consistency and quality of generated graph models. |
|---|---|
| AbstractList | Graph model generation from natural language requirements is an essential task in software engineering, for which large language models (LLMs) have become increasingly popular. A key challenge is ensuring that the generated graph models are consistent with domain-specific well-formed constraints. LLM-generated graphs are often partially correct due to inconsistency with the constraints, limiting their practical usage. To address this, we propose a novel abstraction-concretization framework motivated by self-consistency for generating consistent models. Our approach first abstracts candidate models into a probabilistic partial model and then concretizes this abstraction into a consistent graph model. Preliminary evaluations on taxonomy generation demonstrate that our method significantly enhances both the consistency and quality of generated graph models. |
| Author | Chen, Boqi |
| Author_xml | – sequence: 1 givenname: Boqi surname: Chen fullname: Chen, Boqi organization: McGill University,Electrical and Computer Engineering,Montreal,Canada |
| BookMark | eNotkE9Lw0AUxFdRsNZ8Aw85eUt8-38XvEiotRDxoJ7Ly-bZRtpNyEbEb29QLzNz-DEDc8nOYh-JsRsOJefgbzfVy6qo-uOAseujMUKLUoDQJQAYe8Iyb72TkmtpnOSnbCG0VQX3Ul2wLKWPGZMCpPJ2we6qPqYuTRSnfD3isM-f-pYO-ZoijTjN_flXN-3zGscdzRp3nziHXyhdsfN3PCTK_n3J3h5Wr9VjUT-vN9V9XaBwMBVcOe2Dtag0NL41oBqggBQ0Jy0EKWeNAeItBkfGITYuYABsOUJDppVLdv3X2xHRdhi7I47f2_kLoeYB-QPqQE9V |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICSE-Companion66252.2025.00067 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331536831 |
| EISSN | 2574-1934 |
| EndPage | 219 |
| ExternalDocumentID | 11024280 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-a280t-14859c77a450b9d604b0ecaec51e522e487660e1dac8e68aab8cac0ad1a0be6d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001554070400055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Jun 18 06:01:38 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a280t-14859c77a450b9d604b0ecaec51e522e487660e1dac8e68aab8cac0ad1a0be6d3 |
| PageCount | 2 |
| ParticipantIDs | ieee_primary_11024280 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-April-27 |
| PublicationDateYYYYMMDD | 2025-04-27 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE/ACM International Conference on Software Engineering Companion. Online) |
| PublicationTitleAbbrev | ICSE-COMPANION |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003203497 |
| Score | 2.2898881 |
| Snippet | Graph model generation from natural language requirements is an essential task in software engineering, for which large language models (LLMs) have become... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 218 |
| SubjectTerms | Constraint optimization graph model generation Large language models Limiting Natural languages Probabilistic logic Software engineering Taxonomy |
| Title | Consistent Graph Model Generation with Large Language Models |
| URI | https://ieeexplore.ieee.org/document/11024280 |
| WOSCitedRecordID | wos001554070400055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20iHhSseI3exBva7f52N2At9KqUEpBhd7KfkxAkFTatL_fmU2sePDgJSQhkOwO4c3M7nuPsdscc3CXQC7yzJUiCyUIl7lUpGASgNIFBVEyf6wnEzObFdOWrB65MAAQN5_BPZ3Gtfyw8GtqlfUQqhBRDFbou1qrhqy1baikCUmt6H121-po9p4HL0PR_Fbkh4OZPjGvEmqiSPXbTiWiyejwn99xxLo_vDw-3SLOMduB6oQ9RM9NDFZV80eSn-bkb_bBG0FpmndOzVY-pj3feGz6k81Dqy57Gw1fB0-i9UQQFl9YC6xe8sJrbbNcuiIomTkJ3oLP-4CpFGD9oZSEfrDegDLWOuOtlzb0rXSgQnrKOtWigjPGjXYYFlUWwbhMObzCmAVbptYHRP70nHVp6PPPRvZi_j3qiz_uX7IDml1aakn0FevUyzVcsz2_qd9Xy5sYrC-e-pdh |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yRT2pOPG3PYi3uKxN0hS8jc0N6xg4YbeRH68gSCdb59_vS1onHjx4KW0ptMmjfO-95Ps-Qm4F5uAmBkEFNwXlrgBquEloAioGKIyTECTz83Q8VrNZNmnI6oELAwBh8xnc-9Owlu8Wdu1bZR2EKkQUhRX6tuA8ZjVda9NSSWIvtpLukrtGSbMz6r30af1jeUcczPU99yr2bRQmfxuqBDwZHPzzSw5J-4eZF002mHNEtqA8Jg_BdRPDVVbRoxegjrzD2XtUS0r7mY98uzXK_a5vPNYdyvqhVZu8DvrT3pA2rghU4wsrivWLyGyaai6YyZxk3DCwGqzoAiZTgBWIlAy6TlsFUmltlNWWadfVzIB0yQlplYsSTkmkUoOBkUXmlOHS4BVGzeki0dYh9idnpO2HPv-ohS_m36M-_-P-DdkbTp_zeT4aP12QfT_TfuElTi9Jq1qu4Yrs2M_qbbW8DoH7Aq97mqg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE%2FACM+International+Conference+on+Software+Engineering+Companion.+Online%29&rft.atitle=Consistent+Graph+Model+Generation+with+Large+Language+Models&rft.au=Chen%2C+Boqi&rft.date=2025-04-27&rft.pub=IEEE&rft.eissn=2574-1934&rft.spage=218&rft.epage=219&rft_id=info:doi/10.1109%2FICSE-Companion66252.2025.00067&rft.externalDocID=11024280 |