Smart Structures Theory

The twenty-first century could be called the 'Multifunctional Materials Age'. The inspiration for multifunctional materials comes from nature, and therefore these are often referred to as bio-inspired materials. Bio-inspired materials encompass smart materials and structures, multifunction...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Chopra, Inderjit, Sirohi, Jayant
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: New York Cambridge University Press 2014
Vydání:1
Edice:Cambridge aerospace series
Témata:
ISBN:9780521866576, 052186657X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Obsah:
  • Title Page Preface Table of Contents 1. Historical Developments and Potential Applications: Smart Materials and Structures 2. Piezoelectric Actuators and Sensors 3. Shape Memory Alloys (SMAs) 4. Beam Modeling with Induced-Strain Actuation 5. Plate Modeling with Induced-Strain Actuation 6. Magnetostrictives and Electrostrictives 7. Electrorheological and Magnetorheological Fluids 8. Applications of Active Materials in Integrated Systems Index
  • 2.9.1 Basic Sensing Mechanism -- 2.9.2 Bimorph as a Sensor -- 2.9.3 Signal-Conditioning Electronics -- 2.9.4 Sensor Calibration -- PROBLEM -- Bibliography -- 3 Shape Memory Alloys (SMAs) -- 3.1 Fundamentals of SMA Behavior -- 3.1.1 Phase Transformation -- 3.1.2 Lattice Structure and Deformation Mechanism -- 3.1.3 Low-Temperature Stress-Strain Curve -- 3.1.4 Origin of the One-Way SME -- 3.1.5 Stress-Induced Martensite and Pseudoelasticity -- 3.1.6 Two-Way SME -- 3.1.7 All-Round SME -- 3.1.8 R-Phase Transformation -- 3.1.9 Porous SMA -- 3.2 Constrained Behavior of SMA -- 3.2.1 Free Recovery -- 3.2.2 Constrained Recovery -- 3.2.3 Effective Load Lines of an SMA Wire Actuator -- 3.3 Constitutive Models -- 3.4 Quasi-Static Macroscopic Phenomenological Constitutive Models -- 3.4.1 Tanaka Model -- 3.4.2 Liang and Rogers Model -- 3.4.3 Brinson Model -- 3.4.4 Boyd and Lagoudas Model -- 3.4.5 Other SMA Models -- 3.5 Testing of SMA Wires -- 3.5.1 Sample Preparation, Cycling, and Annealing -- 3.5.2 Transformation Temperatures under Zero Stress -- 3.5.3 Variation of Transformation Temperatures with Stress -- 3.5.4 Stress-Strain Behavior at Constant Temperature -- 3.5.5 Stress-Temperature Behavior at Constant Strain -- 3.5.6 Comparison of Resistive Heating and External Heating -- 3.6 Obtaining Critical Points and Model Parameters from Experimental Data -- 3.7 Comparison of Constitutive Models with Experiments -- 3.8 Constrained Recovery Behavior (Stress versus Temperature) at Constant Strain -- 3.8.1 Worked Example -- 3.8.2 Worked Example -- 3.9 Damping Capacity of SMA -- 3.10 Differences in Stress-Strain Behavior in Tension and Compression -- 3.11 Non-Quasi-Static Behavior -- 3.11.1 Stress-Relaxation -- 3.11.2 Effect of Strain Rate -- 3.11.3 Modeling Non-Quasi-Static Behavior -- 3.11.4 Rate Form of Quasi-Static SMA Constitutive Models
  • 5.11.1 Effect of Two-Dimensional Mesh Density on the Computed Global Response
  • 5.1.2 Macromechanical Behavior of a Laminate -- 5.1.3 Resultant Laminate Forces and Moments -- 5.1.4 Displacements-Based Governing Equations -- 5.1.5 Boundary Conditions -- 5.2 Plate Theory with Induced-Strain Actuation -- 5.2.1 Isotropic Plate: Symmetric Actuation (Extension) -- 5.2.2 Isotropic Plate: Antisymmetric Actuation (Bending) -- 5.2.3 Worked Example -- 5.2.4 Single-Layer Specially Orthotropic Plate (Extension) -- 5.2.5 Single-Layer Specially Orthotropic Plate (Bending) -- 5.2.6 Single-Layer Generally Orthotropic Plate (Extension) -- 5.2.7 Single-Layer Generally Orthotropic Plate (Bending) -- 5.2.8 Multilayered Symmetric Laminate Plate -- 5.2.9 Multilayered Antisymmetric Laminate Plate -- 5.2.10 Summary of Couplings in Plate Stiffness Matrices -- 5.2.11 Worked Example -- 5.3 Classical Laminated Plate Theory (CLPT) Equations in Terms of Displacements -- 5.4 Approximate Solutions Using Energy Principles -- 5.4.1 Galerkin Method -- 5.4.2 Rayleigh-Ritz Method -- 5.4.3 Symmetric Laminated Plate Response -- 5.4.4 Laminated Plate with Induced-Strain Actuation -- 5.4.5 Laminated Plate with Antisymmetric Layup: Extension-Torsion Coupling -- 5.4.6 Laminated Plate with Symmetric Layup: Bending-Torsion Coupling -- 5.4.7 Worked Example -- 5.4.8 Worked Example -- 5.4.9 Worked Example -- 5.5 Coupling Efficiency -- 5.5.1 Extension-Torsion Coupling Efficiency -- 5.5.2 Bending-Torsion Coupling Efficiency -- 5.5.3 Comparison of Extension-Torsion and Bending-Torsion Coupling -- 5.6 Classical Laminated Plate Theory (CLPT) with Induced-Strain Actuation for a Dynamic Case -- 5.7 Refined Plate Theories -- 5.8 Classical Laminated Plate Theory (CLPT) for Moderately Large Deflections -- 5.9 First-Order Shear Deformation Plate Theory (FSDT) with Induced-Strain Actuation -- 5.10 Shear Correction Factors -- 5.11 Effect of Laminate Kinematic Assumptions on Global Response
  • Cover -- Halftitle -- Series -- Title -- Copyright -- Contents -- Preface -- 1 Historical Developments and Potential Applications -- 1.1 Smart Structures -- 1.1.1 Smart Material Actuators and Sensors -- 1.1.2 Smart Actuators -- 1.1.3 Sensors -- 1.1.4 Actuator-Sensor Synthesis -- 1.1.5 Control Methodologies -- 1.2 Manufacturing Issues -- 1.3 Piezoelectricity -- 1.4 Shape Memory Alloys -- 1.5 Electrostrictives -- 1.6 Magnetostrictives -- 1.6.1 Terfenol-D -- 1.6.2 Galfenol -- 1.7 ER and MR Fluids -- 1.8 Capability of Currently Available Smart Materials -- 1.9 Smart Structures Programs -- 1.9.1 Space Systems -- 1.9.2 Fixed-Wing Aircraft -- 1.9.3 Jet Engines -- 1.9.4 Rotary-Wing Aircraft -- 1.9.5 Civil Structures -- 1.9.6 Machine Tools -- 1.9.7 Automotive Systems -- 1.9.8 Marine Systems -- 1.9.9 Medical Systems -- 1.9.10 Electronics Equipment -- 1.9.11 Rail -- 1.9.12 Robots -- 1.9.13 Energy Harvesting -- Bibliography -- 2 Piezoelectric Actuators and Sensors -- 2.1 Fundamentals of Piezoelectricity -- 2.2 Piezoceramics -- 2.3 Soft and Hard Piezoelectric Ceramics -- 2.4 Basic Piezoceramic Characteristics -- 2.5 Electromechanical Constitutive Equations -- 2.5.1 Piezoceramic Actuator Equations -- 2.5.2 Piezoceramic Sensor Equations -- 2.5.3 Alternate Forms of the Constitutive Equations -- 2.5.4 Piezoelectric Coupling Coefficients -- 2.5.5 Actuator Performance and Load Line Analysis -- 2.6 Hysteresis and Nonlinearities in Piezoelectric Materials -- 2.7 Piezoceramic Actuators -- 2.7.1 Behavior under Static Excitation Fields -- 2.7.2 Behavior under Dynamic Excitation Fields -- 2.7.3 Depoling Behavior and Dielectric Breakdown -- 2.7.4 Power Consumption -- 2.8 Equivalent Circuits to Model Piezoceramic Actuators -- 2.8.1 Curie Temperature -- 2.8.2 Cement-Based Piezoelectric Composites -- 2.8.3 Shape Memory Ceramic Actuators -- 2.9 Piezoelectric Sensors
  • 4.5.4 Dissimilar Actuators: Piezo Thickness (tctop =tcbottom) -- 4.5.5 Dissimilar Actuators: Piezo Constants (d31top =d31bottom) -- 4.5.6 Worked Example -- 4.5.7 Bimorph Actuators -- 4.5.8 Induced Beam Response Using Euler-Bernoulli Modeling -- 4.5.9 Embedded Actuators -- 4.5.10 Worked Example -- 4.6 Testing of a Beam with Surface-Mounted Piezoactuators -- 4.6.1 Actuator Configuration -- 4.6.2 Beam Configuration and Wiring of Piezo -- 4.6.3 Procedure -- 4.6.4 Measurement of Tip Slope -- 4.6.5 Data Processing -- 4.7 Extension-Bending-Torsion Beam Model -- 4.8 Beam Equilibrium Equations -- 4.9 Energy Principles and Approximate Solutions -- 4.9.1 Energy Formulation: Uniform-Strain Model -- 4.9.2 Energy Formulation: Euler-Bernoulli Model -- 4.9.3 Galerkin Method -- 4.9.4 Worked Example -- 4.9.5 Worked Example -- 4.9.6 Rayleigh-Ritz Method -- 4.9.7 Worked Example -- 4.9.8 Worked Example -- 4.9.9 Energy Formulation: Dynamic Beam Governing Equation Derived from Hamilton's Principle -- 4.10 Finite Element Analysis with Induced-Strain Actuation -- 4.10.1 Behavior of a Single Element -- 4.10.2 Assembly of Global Mass and Stiffness Matrices -- 4.10.3 Beam Bending with Induced-Strain Actuation -- 4.10.4 Worked Example -- 4.11 First Order Shear Deformation Theory (FSDT) for Beams with Induced-Strain Actuation -- 4.11.1 Formulation of the FSDT for a Beam -- 4.11.2 Shear Correction Factor -- 4.11.3 Transverse Deflection of Uniform Isotropic Beams Including Shear Correction -- 4.11.4 Induced Beam Response Using Timoshenko Shear Model -- 4.11.5 Energy Formulation: FSDT -- 4.12 Layer-Wise Theories -- 4.13 Review of Beam Modeling -- PROBLEMS -- Bibliography -- 5 Plate Modeling with Induced-Strain Actuation -- 5.1 Classical Laminated Plate Theory (CLPT) Formulation without Actuation -- 5.1.1 Stress-Strain Relations for a Lamina at an Arbitrary Orientation
  • 3.11.5 Thermomechanical Energy Equilibrium -- 3.11.6 Cyclic Loading -- 3.12 Power Requirements for SMA Activation -- 3.12.1 Power Input: Resistance Behavior of SMA Wires -- 3.12.2 Heat Absorbed by the SMA Wire -- 3.12.3 Heat Dissipation -- 3.13 Torsional Analysis of SMA Rods and Tubes -- 3.13.1 Validation with Test Data -- 3.13.2 Constrained Recovery Behavior -- 3.14 Composite Structures with Embedded SMA Wires -- 3.14.1 Variable Stiffness Composite Beams -- 3.14.2 SMA-in-Sleeve Concept -- 3.14.3 Beams with Embedded SMA Wires -- 3.14.4 Power Requirements for Activation of SMA in Structures -- 3.14.5 Fabrication of Variable Stiffness Composite Beams -- 3.14.6 Experimental Testing of Variable Stiffness Beams -- 3.15 Concluding Remarks -- Bibliography -- 4 Beam Modeling with Induced-Strain Actuation -- 4.1 Material Elastic Constants -- 4.2 Basic Definitions: Stress, Strains, and Displacements -- 4.2.1 Beams -- 4.2.2 Transverse Deflection of Uniform Isotropic Beams -- 4.3 Simple Blocked-Force Beam Model (Pin Force Model) -- 4.3.1 Single Actuator Characteristics -- 4.3.2 Dual Actuators: Symmetric Actuation -- 4.3.3 Single Actuator: Asymmetric Actuation -- 4.3.4 Unequal Electric Voltage (Vtop =Vbottom) -- 4.3.5 Dissimilar Actuators: Piezo Thickness (tctop =tcbottom ) -- 4.3.6 Dissimilar Actuators: Piezo Constants (d31top =d31bottom) -- 4.3.7 Worked Example -- 4.4 Uniform-Strain Model -- 4.4.1 Dual Actuators: Symmetric Actuation -- 4.4.2 Single Actuator: Asymmetric Actuation -- 4.4.3 Unequal Electric Voltage (Vtop =Vbottom) -- 4.4.4 Dissimilar Actuators: Piezo Thickness (tctop =tcbottom) -- 4.4.5 Dissimilar Actuators: Piezo Constants (d31top =d31bottom ) -- 4.4.6 Worked Example -- 4.5 Euler-Bernoulli Beam Model -- 4.5.1 Dual Actuators: Symmetric Actuation -- 4.5.2 Single Actuator: Asymmetric Actuation -- 4.5.3 Unequal Electric Voltage (Vtop =Vbottom)