Automated Deduction – CADE 29 29th International Conference on Automated Deduction, Rome, Italy, July 1–4, 2023, Proceedings
This open access book constitutes the proceedings of the 29th International Conference on Automated Deduction, CADE 29, which took place in Rome, Italy, during July 2023. The 28 full papers and 5 short papers presented were carefully reviewed and selected from 77 submissions. CADE is the major forum...
Uloženo v:
| Hlavní autoři: | , |
|---|---|
| Médium: | E-kniha |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer Nature
2023
Springer |
| Vydání: | 1 |
| Edice: | Lecture Notes in Computer Science; Lecture Notes in Artificial Intelligence |
| Témata: | |
| ISBN: | 9783031384998, 3031384997, 9783031384981, 3031384989 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Obsah:
- 7 Time Complexity -- 8 Outlook -- References -- Buy One Get 14 Free: Evaluating Local Reductions for Modal Logic -- 1 Introduction -- 2 Preliminaries -- 3 Reductions -- 3.1 Definitional Reduction -- 3.2 Axiomatic Reduction -- 3.3 Discussion -- 4 Evaluation -- 5 Conclusions -- References -- Left-Linear Completion with AC Axioms -- 1 Introduction -- 2 Preliminaries -- 3 Avenhaus' Inference System -- 3.1 Inference System -- 3.2 Confluence Criterion -- 3.3 Correctness Proof -- 4 Bachmair's Inference System -- 5 AC Completion -- 5.1 Limitations of Left-Linear AC Completion -- 5.2 General AC Completion -- 6 Implementation -- 7 Experimental Results -- 8 Conclusion -- References -- On P-Interpolation in Local Theory Extensions and Applications to the Study of Interpolation in the Description Logics EL, EL+ -- 1 Introduction -- 2 Theories, Convexity, P-Interpolation, Beth Definability -- 3 Local Theory Extensions -- 4 R-interpolation in Local Theory Extensions -- 5 Example: Semilattices with Monotone Operators -- 6 Applications to EL and EL+-Subsumption -- 7 Conclusions and Future Work -- References -- Theorem Proving in Dependently-Typed Higher-Order Logic -- 1 Introduction and Related Work -- 2 Preliminaries: Higher-Order Logic -- 3 Dependent Function Types -- 3.1 Language -- 3.2 Translation -- 4 Predicate Subtypes -- 5 Soundness and Completeness -- 6 Theorem Prover Implementation -- 7 Conclusion and Future Work -- References -- Towards Fast Nominal Anti-unification of Letrec-Expressions -- 1 Introduction -- 2 Preliminaries -- 2.1 Data-Structures of Anti-unification Algorithms -- 3 The Anti-unification Problem for NLLX -- 3.1 The Algorithm AntiUnifLetr and Its Rules -- 3.2 From Weak Completeness to Completeness -- 4 Generalization Algorithm Under Semantic Equalities -- 4.1 Anti-unification of Garbage-Free Expressions -- 4.2 Exploiting Semantic Equalities
- 7 Discussion: Related Work and Future Work -- References -- Uniform Substitution for Dynamic Logic with Communicating Hybrid Programs -- 1 Introduction -- 2 Dynamic Logic of Communicating Hybrid Programs -- 2.1 Syntax -- 2.2 Semantics -- 2.3 Static Semantics -- 3 Uniform Substitution for CHP -- 3.1 Semantic Effect of Uniform Substitution -- 3.2 Uniform Substitution Proof Rule -- 4 Axiomatic Proof Calculus -- 5 Related Work -- 6 Conclusion -- References -- An Isabelle/HOL Formalization of the SCL(FOL) Calculus -- 1 Introduction -- 2 The SCL(FOL) Calculus -- 3 Formalization of the SCL(FOL) Calculus -- 4 Conclusion -- References -- SCL(FOL) Can Simulate Non-Redundant Superposition Clause Learning -- 1 Introduction -- 2 Preliminaries -- 3 SCL Simulates Superposition -- 4 Conclusion -- References -- Formal Reasoning About Influence in Natural Sciences Experiments -- 1 Introduction -- 2 Modelling Influence -- 3 The Calculus of Influence -- 4 Completeness for Elementary Diamond-Free Schemes -- 5 Proof Search and Empirical Results -- 6 Conclusion -- References -- A Theory of Cartesian Arrays (with Applications in Quantum Circuit Verification) -- 1 Introduction -- 2 A Theory of Cartesian Arrays -- 2.1 Preliminaries -- 2.2 Definition of the Theory of Cartesian Arrays -- 2.3 Complexity of Satisfiability in CaAL -- 3 Array Semantics of Quantum Circuits -- 3.1 Quantum Circuits -- 3.2 Interpretation of Quantum Gates -- 4 A Decision Procedure for Cartesian Arrays -- 4.1 Preliminaries -- 4.2 Proof Rules -- 4.3 Correctness and Complexity -- 4.4 Optimizations -- 5 Preliminary Experimental Result -- 6 Conclusions -- References -- SAT-Based Subsumption Resolution -- 1 Introduction -- 2 Illustrative Examples and Main Contributions -- 3 Preliminaries -- 4 SAT-Based Subsumption Resolution -- 5 Subsumption Resolution and SAT Encodings
- 2 Preliminaries -- 3 Existing Algorithms and Tools -- 3.1 Representation of Automata Transition Relations -- 3.2 (Non)deterministic Finite Automata -- 3.3 Alternating Automata -- 3.4 String Constraints Solvers -- 3.5 Other Approaches and Tools -- 4 Benchmarks -- 5 The Comparison -- 5.1 Discussion -- References -- Program Synthesis in Saturation -- 1 Introduction -- 2 Preliminaries -- 2.1 Computable Symbols and Programs -- 2.2 Saturation and Superposition -- 2.3 Answer Literals -- 3 Illustrative Example -- 4 Program Synthesis with Answer Literals -- 4.1 From Answer Literals to Programs -- 4.2 Saturation-Based Program Synthesis -- 5 Superposition with Answer Literals -- 6 Computable Unification with Abstraction -- 7 Implementation and Experiments -- 8 Related Work -- 9 Conclusions -- References -- A Uniform Formalisation of Three-Valued Logics in Bisequent Calculus -- 1 Introduction -- 2 Logics -- 3 Bisequent Calculus for K3 (and LP) -- 4 Bisequent Calculi for Other Logics -- 5 Interpolation -- 6 Conclusion -- References -- Proving Almost-Sure Innermost Termination of Probabilistic Term Rewriting Using Dependency Pairs -- 1 Introduction -- 2 The DP Framework -- 3 Probabilistic Term Rewriting -- 4 Probabilistic Dependency Pairs -- 4.1 Dependency Tuples and Chains for Probabilistic Term Rewriting -- 4.2 The Probabilistic DP Framework -- 5 Conclusion and Evaluation -- References -- Verification of NP-Hardness Reduction Functions for Exact Lattice Problems -- 1 Introduction -- 1.1 Contributions -- 1.2 Overview -- 2 Foundations -- 2.1 Problem Reductions -- 2.2 Lattice-Based Computational Problems -- 2.3 Partition and Subset Sum Problems -- 2.4 Notation -- 3 CVP -- 3.1 Towards the SVP -- 4 Bounded Homogeneous Linear Equations -- 4.1 Auxiliary Lemma -- 4.2 a Partition -3mu b BHLE -- 4.3 a Partition -3mu b BHLE -- 5 SVP -- 6 Other p-Norms
- 5 Conclusion and Future Work
- 5.1 Direct SAT Encoding of Subsumption Resolution -- 5.2 Indirect SAT Encoding of Subsumption Resolution -- 5.3 SAT Constraints for Subsumption -- 6 SAT-Based Subsumption Resolution in Saturation -- 7 Implementation and Experiments -- 8 Conclusion -- References -- A More Pragmatic CDCL for IsaSAT and Targetting LLVM (Short Paper) -- 1 Introduction -- 2 Preliminaries -- 3 Pragmatic CDCL for Inprocessing -- 4 Correctness of the Code and Completeness -- 5 Experience Porting the Development to LLVM -- 5.1 Required Changes -- 5.2 Unverified Parts -- 5.3 Lessons Learned -- 6 Performance -- 7 Conclusion -- References -- Proving Non-Termination by Acceleration Driven Clause Learning (Short Paper) -- 1 Introduction -- 2 Preliminaries -- 3 ADCL for Transition Systems -- 4 Proving Non-Termination with ADCL-NT -- 5 Related Work and Experiments -- References -- COOL 2 - A Generic Reasoner for Modal Fixpoint Logics (System Description) -- 1 Introduction -- 2 Satisfiability in the Coalgebraic -Calculus -- 3 Implementation -- 4 Evaluation -- 5 Conclusion -- References -- Choose Your Colour: Tree Interpolation for Quantified Formulas in SMT -- 1 Introduction -- 2 Notation -- 3 Preliminaries -- 4 Colouring of Terms and Literals -- 5 Interpolation for Quantified Formulas -- 5.1 Interpolation Algorithm -- 5.2 Full Interpolation Example -- 6 Combination with Equality-Interpolating Theories -- 7 Implementation in SMTInterpol -- 8 Conclusion -- References -- Proving Termination of C Programs with Lists -- 1 Introduction -- 2 Abstract States for Symbolic Execution -- 3 Symbolic Execution with List Invariants -- 3.1 Inferring List Invariants and Generalization of States -- 3.2 Adapting List Invariants -- 4 Proving Termination -- 5 Conclusion, Related Work, and Evaluation -- References -- Reasoning About Regular Properties: A Comparative Study -- 1 Introduction
- Intro -- Preface -- Organization -- Invited Talks -- -Superposition: From Theory to Trophy -- Nominal Techniques for Software Specification and Verification -- How Can We Trust AI? -- Contents -- Certified Core-Guided MaxSAT Solving -- 1 Introduction -- 1.1 Previous Work -- 1.2 Our Contributions -- 1.3 Outline of This Paper -- 2 Preliminaries -- 3 The OLL Algorithm for Core-Guided MaxSAT Solving -- 4 Proof Logging for the OLL Algorithm for MaxSAT -- 5 Experimental Evaluation -- 6 Concluding Remarks -- References -- Superposition with Delayed Unification -- 1 Introduction -- 2 Preliminaries -- 3 Calculus -- 4 Redundancy Criterion -- 5 Refutational Completeness -- 6 Extending to Higher-Order Logic -- 7 Experimental Results -- 8 Related Work -- 9 Conclusion -- References -- On Incremental Pre-processing for SMT -- 1 Introduction -- 2 Preliminaries -- 3 Incremental Pre-processing -- 3.1 Simplification Rules -- 3.2 Pre-processing Replay -- 4 Simplification Methods -- 4.1 Equality Solving -- 4.2 Unconstrained Sub-terms -- 4.3 Symbol Elimination and Macros -- 5 Implementation -- 6 Related Work -- 6.1 Pre- and In-processing for SAT and QBF -- 6.2 Pre-processing for SMT -- 6.3 Pre-processing for MIP -- 6.4 Pre-processing in First- and Higher-Order Provers -- 6.5 Constrained Horn Clauses -- 7 Summary -- References -- Verified Given Clause Procedures -- 1 Introduction -- 2 Abstract Given Clause Procedures -- 3 Otter and iProver Loops -- 4 DISCOUNT Loop -- 5 Zipperposition Loop -- 6 Conclusion -- References -- QSMA: A New Algorithm for Quantified Satisfiability Modulo Theory and Assignment -- 1 Introduction -- 1.1 High-Level View of the QSMA Algorithm -- 2 Preliminaries -- 3 The QSMA Framework -- 4 The QSMA Algorithm and Its Total Correctness -- 5 The OptiQSMA Algorithm and Its Total Correctness -- 6 The YicesQS Solver and Experimental Results

