Metric algebraic geometry

Metric algebraic geometry combines concepts from algebraic geometry and differential geometry. Building on classical foundations, it offers practical tools for the 21st century. Many applied problems center around metric questions, such as optimization with respect to distances. After a short dive i...

Full description

Saved in:
Bibliographic Details
Main Authors: Breiding, Paul, Kohn, Kathlén, Sturmfels, Bernd
Format: eBook Book
Language:English
Published: Cham Springer Nature Switzerland AG 2024
Birkhäuser
Springer Nature
Birkhäuser Boston
Edition:1
Series:Oberwolfach Seminars
Subjects:
ISBN:9783031514616, 3031514610, 9783031514623, 3031514629
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • 15.1 Homology from Finite Samples -- 15.2 Sampling with Density Guarantees -- 15.3 Markov Chains on Varieties -- 15.4 Chow goes to Monte Carlo -- References
  • Intro -- Preface -- About the Authors -- Acknowledgements -- Contents -- Chapter 1 Historical Snapshot -- 1.1 Polars -- 1.2 Foci -- 1.3 Envelopes -- Chapter 2 Critical Equations -- 2.1 Euclidean Distance Degree -- 2.2 Low-Rank Matrix Approximation -- 2.3 Invitation to Polar Degrees -- Chapter 3 Computations -- 3.1 Gröbner Bases -- 3.2 The Parameter Continuation Theorem -- 3.3 Polynomial Homotopy Continuation -- Chapter 4 Polar Degrees -- 4.1 Polar Varieties -- 4.2 Projective Duality -- 4.3 Chern Classes -- Chapter 5 Wasserstein Distance -- 5.1 Polyhedral Norms -- 5.2 Optimal Transport and Independence Models -- 5.3 Wasserstein meets Segre-Veronese -- Chapter 6 Curvature -- 6.1 Plane Curves -- 6.2 Algebraic Varieties -- 6.3 Volumes of Tubular Neighborhoods -- Chapter 7 Reach and Offset -- 7.1 Medial Axis and Bottlenecks -- 7.2 Offset Hypersurfaces -- 7.3 Offset Discriminant -- Chapter 8 Voronoi Cells -- 8.1 Voronoi Basics -- 8.2 Algebraic Boundaries -- 8.3 Degree Formulas -- 8.4 Voronoi meets Eckart-Young -- Chapter 9 Condition Numbers -- 9.1 Errors in Numerical Computations -- 9.2 Matrix Inversion and Eckart-Young -- 9.3 Condition Number Theorems -- 9.4 Distance to the Discriminant -- Chapter 10 Machine Learning -- 10.1 Neural Networks -- 10.2 Convolutional Networks -- 10.3 Learning Varieties -- Chapter 11 Maximum Likelihood -- 11.1 Kullback-Leibler Divergence -- 11.2 Maximum Likelihood Degree -- 11.3 Scattering Equations -- 11.4 Gaussian Models -- Chapter 12 Tensors -- 12.1 Tensors and their Rank -- 12.2 Eigenvectors and Singular Vectors -- 12.3 Volumes of Rank-One Varieties -- Chapter 13 Computer Vision -- 13.1 Multiview Varieties -- 13.2 Grassmann Tensors -- 13.3 3D Reconstruction from Unknown Cameras -- Chapter 14 Volumes of Semialgebraic Sets -- 14.1 Calculus and Beyond -- 14.2 D-Modules -- 14.3 SDP Hierarchies -- Chapter 15 Sampling