AI-based geological subsurface reconstruction using sparse convolutional autoencoders

Subsurface reconstruction is critical for geological modeling and resource exploration. Conventional spatial interpolation methods are limited by stationarity and spatial isotropy assumptions, while advanced geostatistical techniques require specialized datasets. Deep learning approaches often need...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & geosciences Ročník 204; s. 105981
Hlavní autori: Uribe-Ventura, Rodrigo, Barriga-Berrios, Yoan, Barriga-Gamarra, Jorge, Baby, Patrice, Viveen, Willem
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.10.2025
Predmet:
ISSN:0098-3004
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Subsurface reconstruction is critical for geological modeling and resource exploration. Conventional spatial interpolation methods are limited by stationarity and spatial isotropy assumptions, while advanced geostatistical techniques require specialized datasets. Deep learning approaches often need large datasets, which is impractical for geoscientific applications. This study presents an AI-based methodology using a sparse convolutional autoencoder for robust subsurface modeling under data constraints and integrating secondary data sources such as Vertical Electrical Sounding (VES) data. A four-stage testing framework was implemented: (1) emulating conventional interpolation for baseline performance; (2) reconstructing subsurface geometries from synthetic data; (3) incorporating geophysical constraints through VES forward modeling; and (4) validating the methodology using a real-world case study from the Huancayo tectonic basin in the Peruvian Andes, using 41 VES measurements across two cross-sections (12 and 14 km long). Results demonstrate that the proposed model effectively emulates kriging interpolation (mean squared error: 1.5 × 10−3 to 1.2 × 10−3 with 100–800 training examples) through transfer learning from an inverse-distance, pre-trained model. In subsurface reconstruction, the model outperforms kriging (37.4–61.7 % improvement across 1–15 % sampling densities) through its ability to adapt to non-stationary conditions. When incorporating synthetic VES data, the model effectively reconstructed subsurface geometries with error reduction from 4.1 × 10−1 to 9.1 × 10−3 as stations increased from 1 to 40, demonstrating diminishing returns beyond this point. Application to the Huancayo basin case study validated the model's practical applicability by successfully identifying previously unmapped features including the contact between basement and sedimentary infill, folds and faults. The methodology demonstrates the AI's capability to enhance geological understanding in complex tectonic settings, revealing subtle features and refining existing assumptions about subsurface architecture. [Display omitted] •Novel AI method reconstructs subsurface properties with geophysical integration.•AI model reproduces conventional techniques using minimal training data.•Method outperformed conventional estimation in complex geological settings.•The new method enabled the identification of previously unknown subsurface features.
AbstractList Subsurface reconstruction is critical for geological modeling and resource exploration. Conventional spatial interpolation methods are limited by stationarity and spatial isotropy assumptions, while advanced geostatistical techniques require specialized datasets. Deep learning approaches often need large datasets, which is impractical for geoscientific applications. This study presents an AI-based methodology using a sparse convolutional autoencoder for robust subsurface modeling under data constraints and integrating secondary data sources such as Vertical Electrical Sounding (VES) data. A four-stage testing framework was implemented: (1) emulating conventional interpolation for baseline performance; (2) reconstructing subsurface geometries from synthetic data; (3) incorporating geophysical constraints through VES forward modeling; and (4) validating the methodology using a real-world case study from the Huancayo tectonic basin in the Peruvian Andes, using 41 VES measurements across two cross-sections (12 and 14 km long). Results demonstrate that the proposed model effectively emulates kriging interpolation (mean squared error: 1.5 × 10−3 to 1.2 × 10−3 with 100–800 training examples) through transfer learning from an inverse-distance, pre-trained model. In subsurface reconstruction, the model outperforms kriging (37.4–61.7 % improvement across 1–15 % sampling densities) through its ability to adapt to non-stationary conditions. When incorporating synthetic VES data, the model effectively reconstructed subsurface geometries with error reduction from 4.1 × 10−1 to 9.1 × 10−3 as stations increased from 1 to 40, demonstrating diminishing returns beyond this point. Application to the Huancayo basin case study validated the model's practical applicability by successfully identifying previously unmapped features including the contact between basement and sedimentary infill, folds and faults. The methodology demonstrates the AI's capability to enhance geological understanding in complex tectonic settings, revealing subtle features and refining existing assumptions about subsurface architecture. [Display omitted] •Novel AI method reconstructs subsurface properties with geophysical integration.•AI model reproduces conventional techniques using minimal training data.•Method outperformed conventional estimation in complex geological settings.•The new method enabled the identification of previously unknown subsurface features.
ArticleNumber 105981
Author Barriga-Berrios, Yoan
Barriga-Gamarra, Jorge
Baby, Patrice
Viveen, Willem
Uribe-Ventura, Rodrigo
Author_xml – sequence: 1
  givenname: Rodrigo
  orcidid: 0009-0003-9771-1094
  surname: Uribe-Ventura
  fullname: Uribe-Ventura, Rodrigo
  organization: Grupo de Investigación en Geología Sedimentaria, Departamento de Ingeniería, Pontificia Universidad Católica del Perú, Lima, Peru
– sequence: 2
  givenname: Yoan
  surname: Barriga-Berrios
  fullname: Barriga-Berrios, Yoan
  organization: Grupo de Investigación en Geología Sedimentaria, Departamento de Ingeniería, Pontificia Universidad Católica del Perú, Lima, Peru
– sequence: 3
  givenname: Jorge
  surname: Barriga-Gamarra
  fullname: Barriga-Gamarra, Jorge
  organization: Universidad Nacional Jorge Basadre Grohmann, Avenida Miraflores s/n, 316, Tacna, Peru
– sequence: 4
  givenname: Patrice
  surname: Baby
  fullname: Baby, Patrice
  organization: Grupo de Investigación en Geología Sedimentaria, Departamento de Ingeniería, Pontificia Universidad Católica del Perú, Lima, Peru
– sequence: 5
  givenname: Willem
  surname: Viveen
  fullname: Viveen, Willem
  email: wviveen@pucp.pe
  organization: Grupo de Investigación en Geología Sedimentaria, Departamento de Ingeniería, Pontificia Universidad Católica del Perú, Lima, Peru
BookMark eNp9kM9qwzAMh33oYO22J9glL5BOtuM2OexQyv4UCrusZyM7cnHJ4mInhb39nHXnXSTQj09I34LN-tATY48clhz46um0tHiksBQgVJ6opuYzNgdo6lICVLdskdIJAISo1ZwdNrvSYKK2yEwXjt5iV6TRpDE6tFREsqFPQxzt4ENfjMn3xyKdMSYqcnIJ3TgFGcJxCNTb0FJM9-zGYZfo4a_fscPry-f2vdx_vO22m32JYl0PpbPOSW7X1VRXgAK542DQSLuW5FARVk1lFTnVKuTKtQatdbIxDSgBRt4xed1rY0gpktPn6L8wfmsOerKhT_rXhp5s6KuNTD1fKcqnXTxFnazPp1Pr87uDboP_l_8B4pBw4w
Cites_doi 10.1016/j.eswa.2025.128166
10.1016/j.gloplacha.2019.03.001
10.1007/s10596-024-10330-w
10.1007/978-3-319-65633-5_8
10.1007/s11004-012-9428-z
10.1016/j.envsoft.2013.12.008
10.1023/A:1014009426274
10.1007/s11004-018-09782-5
10.1190/1.3386676
10.1145/3658226
10.1145/3446776
10.1038/s41586-019-0912-1
10.1016/j.tecto.2021.228942
10.1007/s10064-020-01867-y
10.1016/j.neunet.2014.09.003
10.1016/j.earscirev.2024.104998
10.1016/j.jappgeo.2017.02.007
10.1038/nature14539
10.1109/TKDE.2018.2861006
10.1007/s11004-009-9229-1
10.1109/TPAMI.2020.3031898
10.1016/j.cageo.2020.104423
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cageo.2025.105981
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
ExternalDocumentID 10_1016_j_cageo_2025_105981
S0098300425001311
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACRPL
ACSBN
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADXHL
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
TN5
WUQ
ZCA
ZMT
~02
~G-
9DU
AAYXX
ACLOT
CITATION
EFLBG
~HD
ID FETCH-LOGICAL-a278t-fcff31c74f31c60a2a1f10bab3c73efa5ea494c5ef5d5a15fdbaccf39b90520b3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001502921300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-3004
IngestDate Sat Nov 29 07:45:59 EST 2025
Sat Aug 09 17:32:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Andes
Huancayo basin
Electrical resistivity
Geophysics
Basin structure
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a278t-fcff31c74f31c60a2a1f10bab3c73efa5ea494c5ef5d5a15fdbaccf39b90520b3
ORCID 0009-0003-9771-1094
ParticipantIDs crossref_primary_10_1016_j_cageo_2025_105981
elsevier_sciencedirect_doi_10_1016_j_cageo_2025_105981
PublicationCentury 2000
PublicationDate October 2025
2025-10-00
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: October 2025
PublicationDecade 2020
PublicationTitle Computers & geosciences
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References LeCun, Bengio, Hinton (bib30) 2015; 521
Pan, Ni, Sun, Yang, Chen (bib42) 2010
Blanchy, Saneiyan, Boyd, McLachlan, Binley (bib8) 2020; 137
Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (bib46) 2019; 566
Banerjee, Nguyen, Fookes, Raissi (bib3) 2025; 287
Horton, Folguera (bib24) 2022
Viveen, Zevallos-Valdivia, Sanjurjo-Sanchez (bib54) 2019; 176
Liu, Mao, Wu, Feichtenhofer, Darrell, Xie (bib34) 2022
Boisvert, Manchuk, Deutsch (bib9) 2009; 41
Pineda, Ayma, Beltran (bib44) 2020; 43
Simonyan, K., & Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations (ICLR 2015), 1–14.
Caers (bib10) 2011
Paredes (bib43) 1994; 48
Akanmu, Adewumi (bib1) 2016; 4
Bergen, Johnson, de Hoop, Beroza (bib6) 2019; 363
Mariethoz, Caers (bib37) 2014
Liu, Salazar, Jo, Prodanović, Pyrcz (bib33) 2025; 29
Goovaerts (bib19) 1997; vol. 483
Graham (bib20) 2015
Tian, Jiang, Diao, Lin, Wang, Yuan (bib53)
Zhang, Bengio, Hardt, Recht, Vinyals (bib61) 2021; 64
Jaillard, Hérail, Monfret, Díaz-Martínez, Baby, Lavenu, Dumont, Cordani, Milani, Campos (bib26) 2000
Mallet (bib38) 2002
Baby, Prudhomme, Brusset, Robert, Roddaz, Calderon, Eude, Gil, Hermoza, Hurtado, Brichau, Calvès, Antoine, Salas-Gismondi (bib2) 2025; 260
Woo, Debnath, Hu, Chen, Liu, Kweon, Xie (bib58) 2023
Chiles, Delfiner (bib11) 2012; vol 713
Feng, Grana, Mosegaard (bib16) 2025
Graham, Engelcke, Van Der Maaten (bib21) 2018
Yin, Tao, Xia (bib59) 2020; 79
Wise (bib56) 2007; vol 102
Karpatne, Ebert-Uphoff, Ravela, Babaie, Kumar (bib27) 2018; 31
Cressie (bib12) 2015
Grana, Della Rossa (bib22) 2010; 75
Huang, Liu, Van Der Maaten, Weinberger (bib25) 2017
Lary, Zewdie, Liu, Wu, Levetin, Allee, Malakar, Walker, Mussa, Mannino, Aurin (bib29) 2018; 165
Yosinski, Clune, Bengio, Lipson (bib60) 2014; 27
Deng, Dong, Socher, Li, Li, Fei-Fei (bib14) 2009
He, Zhang, Ren, Sun (bib23) 2016
Krizhevsky, Sutskever, Hinton (bib28) 2012; 25
Viveen, Baby, Hurtado-Enríquez (bib55) 2021; 813
Williams, Huang, Swartz, Klar, Thakkar, Cong, Ren, Li, Fuji-Tsang, Fidler, Sifakis (bib57) 2024; 43
Silva, Deutsch (bib49) 2019; 51
Schmidhuber (bib48) 2015; 61
Qi, Luo (bib45) 2020; 44
Strebelle (bib51) 2002; 34
Machuca-Mory, Deutsch (bib36) 2013; 45
Dollfus, Mégard (bib15) 1968; 10
Lyster, Deutsch, Dose (bib35) 2006
Li, Heap (bib31) 2014; 53
Mégard (bib39) 1968
Tejero, Gomez-Ortiz, Heydt, Toledo, Martínez, Rodriguez, Suarez (bib52) 2017; 139
Reichstein (10.1016/j.cageo.2025.105981_bib46) 2019; 566
Machuca-Mory (10.1016/j.cageo.2025.105981_bib36) 2013; 45
Goovaerts (10.1016/j.cageo.2025.105981_bib19) 1997; vol. 483
Viveen (10.1016/j.cageo.2025.105981_bib55) 2021; 813
Strebelle (10.1016/j.cageo.2025.105981_bib51) 2002; 34
Huang (10.1016/j.cageo.2025.105981_bib25) 2017
Mallet (10.1016/j.cageo.2025.105981_bib38) 2002
Liu (10.1016/j.cageo.2025.105981_bib33) 2025; 29
Feng (10.1016/j.cageo.2025.105981_bib16) 2025
Karpatne (10.1016/j.cageo.2025.105981_bib27) 2018; 31
Grana (10.1016/j.cageo.2025.105981_bib22) 2010; 75
Banerjee (10.1016/j.cageo.2025.105981_bib3) 2025; 287
Liu (10.1016/j.cageo.2025.105981_bib34) 2022
Dollfus (10.1016/j.cageo.2025.105981_bib15) 1968; 10
Boisvert (10.1016/j.cageo.2025.105981_bib9) 2009; 41
Graham (10.1016/j.cageo.2025.105981_bib21) 2018
Woo (10.1016/j.cageo.2025.105981_bib58) 2023
Akanmu (10.1016/j.cageo.2025.105981_bib1) 2016; 4
Wise (10.1016/j.cageo.2025.105981_bib56) 2007; vol 102
Horton (10.1016/j.cageo.2025.105981_bib24) 2022
LeCun (10.1016/j.cageo.2025.105981_bib30) 2015; 521
Chiles (10.1016/j.cageo.2025.105981_bib11) 2012; vol 713
Bergen (10.1016/j.cageo.2025.105981_bib6) 2019; 363
Yin (10.1016/j.cageo.2025.105981_bib59) 2020; 79
Qi (10.1016/j.cageo.2025.105981_bib45) 2020; 44
Caers (10.1016/j.cageo.2025.105981_bib10) 2011
Zhang (10.1016/j.cageo.2025.105981_bib61) 2021; 64
Blanchy (10.1016/j.cageo.2025.105981_bib8) 2020; 137
Baby (10.1016/j.cageo.2025.105981_bib2) 2025; 260
Pan (10.1016/j.cageo.2025.105981_bib42) 2010
Pineda (10.1016/j.cageo.2025.105981_bib44) 2020; 43
Li (10.1016/j.cageo.2025.105981_bib31) 2014; 53
10.1016/j.cageo.2025.105981_bib50
Graham (10.1016/j.cageo.2025.105981_bib20) 2015
Viveen (10.1016/j.cageo.2025.105981_bib54) 2019; 176
Deng (10.1016/j.cageo.2025.105981_bib14) 2009
Williams (10.1016/j.cageo.2025.105981_bib57) 2024; 43
Lyster (10.1016/j.cageo.2025.105981_bib35) 2006
Paredes (10.1016/j.cageo.2025.105981_bib43) 1994; 48
Tian (10.1016/j.cageo.2025.105981_bib53)
Schmidhuber (10.1016/j.cageo.2025.105981_bib48) 2015; 61
Lary (10.1016/j.cageo.2025.105981_bib29) 2018; 165
He (10.1016/j.cageo.2025.105981_bib23) 2016
Yosinski (10.1016/j.cageo.2025.105981_bib60) 2014; 27
Krizhevsky (10.1016/j.cageo.2025.105981_bib28) 2012; 25
Mégard (10.1016/j.cageo.2025.105981_bib39) 1968
Jaillard (10.1016/j.cageo.2025.105981_bib26) 2000
Mariethoz (10.1016/j.cageo.2025.105981_bib37) 2014
Silva (10.1016/j.cageo.2025.105981_bib49) 2019; 51
Tejero (10.1016/j.cageo.2025.105981_bib52) 2017; 139
Cressie (10.1016/j.cageo.2025.105981_bib12) 2015
References_xml – volume: 48
  year: 1994
  ident: bib43
  article-title: Geología del cuadrángulo de Jauja
  publication-title: Instituto Geol. Minero y Metalúrgico del Perú, Bol
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: bib48
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
– start-page: 1
  year: 2025
  end-page: 24
  ident: bib16
  article-title: Geostatistical facies simulation based on training image using generative networks and gradual deformation
  publication-title: Math. Geosci.
– start-page: 123
  year: 1968
  ident: bib39
  article-title: - Geología del cuadrángulo de Huancayo
  publication-title: Bol. Servicio de Geol. y Minería, No. 18
– volume: 176
  start-page: 1
  year: 2019
  end-page: 22
  ident: bib54
  article-title: The influence of centennial-scale variations in the South American summer monsoon and base-level fall on Holocene fluvial systems in the Peruvian Andes
  publication-title: Global Planet. Change
– volume: vol 713
  year: 2012
  ident: bib11
  publication-title: Geostatistics: Modeling Spatial Uncertainty
– volume: vol. 483
  year: 1997
  ident: bib19
  publication-title: Geostatistics for Natural Resources Evaluation
– start-page: 9224
  year: 2018
  end-page: 9232
  ident: bib21
  article-title: 3d semantic segmentation with submanifold sparse convolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib23
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 813
  year: 2021
  ident: bib55
  article-title: Assessing the accuracy of combined DEM-based lineament mapping and the normalised SL-index as a tool for active fault mapping
  publication-title: Tectonophysics
– volume: 34
  start-page: 1
  year: 2002
  end-page: 21
  ident: bib51
  article-title: Conditional simulation of complex geological structures using multiple-point statistics
  publication-title: Math. Geol.
– start-page: 16133
  year: 2023
  end-page: 16142
  ident: bib58
  article-title: Convnext v2: Co-designing and scaling convnets with masked autoencoders
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 25
  year: 2012
  ident: bib28
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 31
  start-page: 1544
  year: 2018
  end-page: 1554
  ident: bib27
  article-title: Machine learning for the geosciences: challenges and opportunities
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 139
  start-page: 54
  year: 2017
  end-page: 64
  ident: bib52
  article-title: Electrical resistivity imaging of the shallow structures of an intraplate basin: the Guadiana Basin (SW Spain)
  publication-title: J. Appl. Geophys.
– volume: 75
  start-page: O21
  year: 2010
  end-page: O37
  ident: bib22
  article-title: Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion
  publication-title: Geophysics
– start-page: 26
  year: 2006
  ident: bib35
  article-title: A new MPS simulation algorithm based on Gibbs sampling
  publication-title: Centre Comput. Geostat.
– year: 2015
  ident: bib12
  article-title: Statistics for Spatial Data
– volume: 79
  start-page: 5049
  year: 2020
  end-page: 5060
  ident: bib59
  article-title: Active faults and bedrock detection with super-high-density electrical resistivity imaging
  publication-title: Bull. Eng. Geol. Environ.
– start-page: 481
  year: 2000
  end-page: 559
  ident: bib26
  publication-title: Tectonic Evolution of the Andes of Ecuador, Peru, Bolivia and Northern Chile
– ident: bib53
  article-title: Designing bert for convolutional networks: sparse and hierarchical masked modeling
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: bib25
  article-title: Densely connected convolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 44
  start-page: 2168
  year: 2020
  end-page: 2187
  ident: bib45
  article-title: Small data challenges in big data era: a survey of recent progress on unsupervised and semi-supervised methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: vol 102
  year: 2007
  ident: bib56
  publication-title: Tectono-stratigraphic history of the Huancayo intermontane basin, central Peru: Boletín de la Sociedad Geológica del Perú
– volume: 51
  start-page: 527
  year: 2019
  end-page: 552
  ident: bib49
  article-title: Multivariate categorical modeling with hierarchical truncated pluri-Gaussian simulation
  publication-title: Math. Geosci.
– year: 2011
  ident: bib10
  article-title: Modeling Uncertainty in the Earth Sciences
– volume: 41
  start-page: 585
  year: 2009
  end-page: 601
  ident: bib9
  article-title: Kriging in the presence of locally varying anisotropy using non-Euclidean distances
  publication-title: Math. Geosci.
– volume: 29
  start-page: 6
  year: 2025
  ident: bib33
  article-title: Minimum acceptance criteria for subsurface scenario-based uncertainty models from single image generative adversarial networks (SinGAN)
  publication-title: Comput. Geosci.
– year: 2002
  ident: bib38
  article-title: Geomodeling
– volume: 566
  start-page: 195
  year: 2019
  end-page: 204
  ident: bib46
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
– year: 2015
  ident: bib20
  article-title: Sparse 3D convolutional neural networks
– volume: 43
  start-page: 1
  year: 2024
  end-page: 15
  ident: bib57
  article-title: fVDB: a deep-learning framework for sparse, large scale, and high performance spatial intelligence
  publication-title: ACM Trans. Graph.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib30
  article-title: Deep learning
  publication-title: Nature
– volume: 53
  start-page: 173
  year: 2014
  end-page: 189
  ident: bib31
  article-title: Spatial interpolation methods applied in the environmental sciences: a review
  publication-title: Environ. Model. Software
– volume: 137
  year: 2020
  ident: bib8
  article-title: ResIPy, an intuitive open source software for complex geoelectrical inversion/modeling
  publication-title: Comput. Geosci.
– volume: 27
  year: 2014
  ident: bib60
  article-title: How transferable are features in deep neural networks?
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 64
  start-page: 107
  year: 2021
  end-page: 115
  ident: bib61
  article-title: Understanding deep learning (still) requires rethinking generalization
  publication-title: Commun. ACM
– volume: 363
  year: 2019
  ident: bib6
  article-title: Machine learning for data-driven discovery in solid Earth geoscience
  publication-title: Sci. Technol. Humanit.
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib14
  article-title: Imagenet: a large-scale hierarchical image database
  publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 11976
  year: 2022
  end-page: 11986
  ident: bib34
  article-title: A convnet for the 2020s
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 287
  start-page: 128166
  year: 2025
  ident: bib3
  article-title: A survey on physics informed reinforcement learning: review and open problems
  publication-title: Exp. Syst. Appl.
– volume: 260
  year: 2025
  ident: bib2
  article-title: The Northern Central Andes and Andean tectonic evolution revisited: an integrated stratigraphic and structural model of three superimposed orogens
  publication-title: Earth Sci. Rev.
– volume: 165
  year: 2018
  ident: bib29
  article-title: Machine learning applications for earth observation
  publication-title: Earth Observ. Open Sci. Innov.
– volume: 43
  start-page: 9
  year: 2020
  end-page: 14
  ident: bib44
  article-title: A generative adversarial network approach for super-resolution of Sentinel-2 satellite images
  publication-title: Int. Arch. Photogram. Rem. Sens. Spatial Inf. Sci.
– volume: 10
  start-page: 429
  year: 1968
  end-page: 440
  ident: bib15
  article-title: - Les formations quaternaires du basin de Huancayo et leur néotectonique (Andes centrales peruviennes)
  publication-title: Rev. Geogr. Phys. Geol. Dyn.
– start-page: 3
  year: 2022
  end-page: 28
  ident: bib24
  article-title: Tectonic inheritance and structural styles in the Andean fold-thrust belt and foreland basin
  publication-title: Andean Structural Styles
– volume: 4
  start-page: 112
  year: 2016
  end-page: 126
  ident: bib1
  article-title: Geophysical characterization of aquifer parameters within basement complex rocks using electrical sounding data from the polytechnic, Ibadan, Southwestern Nigeria
  publication-title: Int. J. Sci. Res. Knowl.
– start-page: 751
  year: 2010
  end-page: 760
  ident: bib42
  article-title: Cross-domain sentiment classification via spectral feature alignment
  publication-title: Proceedings of the 19th International Conference on World Wide Web
– reference: Simonyan, K., & Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations (ICLR 2015), 1–14.
– volume: 45
  start-page: 31
  year: 2013
  end-page: 48
  ident: bib36
  article-title: Non-stationary geostatistical modeling based on distance weighted statistics and distributions
  publication-title: Math. Geosci.
– year: 2014
  ident: bib37
  article-title: Multiple-point Geostatistics: Stochastic Modeling with Training Images
– volume: 287
  start-page: 128166
  year: 2025
  ident: 10.1016/j.cageo.2025.105981_bib3
  article-title: A survey on physics informed reinforcement learning: review and open problems
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2025.128166
– volume: 25
  year: 2012
  ident: 10.1016/j.cageo.2025.105981_bib28
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 176
  start-page: 1
  year: 2019
  ident: 10.1016/j.cageo.2025.105981_bib54
  article-title: The influence of centennial-scale variations in the South American summer monsoon and base-level fall on Holocene fluvial systems in the Peruvian Andes
  publication-title: Global Planet. Change
  doi: 10.1016/j.gloplacha.2019.03.001
– start-page: 1
  year: 2025
  ident: 10.1016/j.cageo.2025.105981_bib16
  article-title: Geostatistical facies simulation based on training image using generative networks and gradual deformation
  publication-title: Math. Geosci.
– year: 2015
  ident: 10.1016/j.cageo.2025.105981_bib20
  article-title: Sparse 3D convolutional neural networks
– volume: 29
  start-page: 6
  issue: 1
  year: 2025
  ident: 10.1016/j.cageo.2025.105981_bib33
  article-title: Minimum acceptance criteria for subsurface scenario-based uncertainty models from single image generative adversarial networks (SinGAN)
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-024-10330-w
– volume: 43
  start-page: 9
  year: 2020
  ident: 10.1016/j.cageo.2025.105981_bib44
  article-title: A generative adversarial network approach for super-resolution of Sentinel-2 satellite images
  publication-title: Int. Arch. Photogram. Rem. Sens. Spatial Inf. Sci.
– start-page: 16133
  year: 2023
  ident: 10.1016/j.cageo.2025.105981_bib58
  article-title: Convnext v2: Co-designing and scaling convnets with masked autoencoders
– volume: vol 713
  year: 2012
  ident: 10.1016/j.cageo.2025.105981_bib11
– start-page: 3
  year: 2022
  ident: 10.1016/j.cageo.2025.105981_bib24
  article-title: Tectonic inheritance and structural styles in the Andean fold-thrust belt and foreland basin
– year: 2014
  ident: 10.1016/j.cageo.2025.105981_bib37
– volume: 27
  year: 2014
  ident: 10.1016/j.cageo.2025.105981_bib60
  article-title: How transferable are features in deep neural networks?
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 165
  year: 2018
  ident: 10.1016/j.cageo.2025.105981_bib29
  article-title: Machine learning applications for earth observation
  publication-title: Earth Observ. Open Sci. Innov.
  doi: 10.1007/978-3-319-65633-5_8
– volume: 45
  start-page: 31
  year: 2013
  ident: 10.1016/j.cageo.2025.105981_bib36
  article-title: Non-stationary geostatistical modeling based on distance weighted statistics and distributions
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-012-9428-z
– volume: 10
  start-page: 429
  year: 1968
  ident: 10.1016/j.cageo.2025.105981_bib15
  article-title: - Les formations quaternaires du basin de Huancayo et leur néotectonique (Andes centrales peruviennes)
  publication-title: Rev. Geogr. Phys. Geol. Dyn.
– volume: 53
  start-page: 173
  year: 2014
  ident: 10.1016/j.cageo.2025.105981_bib31
  article-title: Spatial interpolation methods applied in the environmental sciences: a review
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2013.12.008
– volume: 34
  start-page: 1
  year: 2002
  ident: 10.1016/j.cageo.2025.105981_bib51
  article-title: Conditional simulation of complex geological structures using multiple-point statistics
  publication-title: Math. Geol.
  doi: 10.1023/A:1014009426274
– start-page: 248
  year: 2009
  ident: 10.1016/j.cageo.2025.105981_bib14
  article-title: Imagenet: a large-scale hierarchical image database
– volume: 51
  start-page: 527
  issue: 5
  year: 2019
  ident: 10.1016/j.cageo.2025.105981_bib49
  article-title: Multivariate categorical modeling with hierarchical truncated pluri-Gaussian simulation
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-018-09782-5
– start-page: 26
  issue: 8
  year: 2006
  ident: 10.1016/j.cageo.2025.105981_bib35
  article-title: A new MPS simulation algorithm based on Gibbs sampling
  publication-title: Centre Comput. Geostat.
– volume: vol. 483
  year: 1997
  ident: 10.1016/j.cageo.2025.105981_bib19
– volume: 75
  start-page: O21
  issue: 3
  year: 2010
  ident: 10.1016/j.cageo.2025.105981_bib22
  article-title: Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion
  publication-title: Geophysics
  doi: 10.1190/1.3386676
– ident: 10.1016/j.cageo.2025.105981_bib53
– volume: 43
  start-page: 1
  issue: 4
  year: 2024
  ident: 10.1016/j.cageo.2025.105981_bib57
  article-title: fVDB: a deep-learning framework for sparse, large scale, and high performance spatial intelligence
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3658226
– year: 2011
  ident: 10.1016/j.cageo.2025.105981_bib10
– start-page: 481
  year: 2000
  ident: 10.1016/j.cageo.2025.105981_bib26
– volume: 64
  start-page: 107
  issue: 3
  year: 2021
  ident: 10.1016/j.cageo.2025.105981_bib61
  article-title: Understanding deep learning (still) requires rethinking generalization
  publication-title: Commun. ACM
  doi: 10.1145/3446776
– year: 2002
  ident: 10.1016/j.cageo.2025.105981_bib38
– volume: 566
  start-page: 195
  issue: 7743
  year: 2019
  ident: 10.1016/j.cageo.2025.105981_bib46
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– volume: 813
  year: 2021
  ident: 10.1016/j.cageo.2025.105981_bib55
  article-title: Assessing the accuracy of combined DEM-based lineament mapping and the normalised SL-index as a tool for active fault mapping
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2021.228942
– volume: 79
  start-page: 5049
  year: 2020
  ident: 10.1016/j.cageo.2025.105981_bib59
  article-title: Active faults and bedrock detection with super-high-density electrical resistivity imaging
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-020-01867-y
– volume: 4
  start-page: 112
  issue: 5
  year: 2016
  ident: 10.1016/j.cageo.2025.105981_bib1
  article-title: Geophysical characterization of aquifer parameters within basement complex rocks using electrical sounding data from the polytechnic, Ibadan, Southwestern Nigeria
  publication-title: Int. J. Sci. Res. Knowl.
– start-page: 9224
  year: 2018
  ident: 10.1016/j.cageo.2025.105981_bib21
  article-title: 3d semantic segmentation with submanifold sparse convolutional networks
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.cageo.2025.105981_bib48
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– start-page: 4700
  year: 2017
  ident: 10.1016/j.cageo.2025.105981_bib25
  article-title: Densely connected convolutional networks
– start-page: 11976
  year: 2022
  ident: 10.1016/j.cageo.2025.105981_bib34
  article-title: A convnet for the 2020s
– volume: 260
  year: 2025
  ident: 10.1016/j.cageo.2025.105981_bib2
  article-title: The Northern Central Andes and Andean tectonic evolution revisited: an integrated stratigraphic and structural model of three superimposed orogens
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2024.104998
– ident: 10.1016/j.cageo.2025.105981_bib50
– year: 2015
  ident: 10.1016/j.cageo.2025.105981_bib12
– volume: 363
  issue: 6433
  year: 2019
  ident: 10.1016/j.cageo.2025.105981_bib6
  article-title: Machine learning for data-driven discovery in solid Earth geoscience
  publication-title: Sci. Technol. Humanit.
– volume: 139
  start-page: 54
  year: 2017
  ident: 10.1016/j.cageo.2025.105981_bib52
  article-title: Electrical resistivity imaging of the shallow structures of an intraplate basin: the Guadiana Basin (SW Spain)
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2017.02.007
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.cageo.2025.105981_bib30
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 31
  start-page: 1544
  issue: 8
  year: 2018
  ident: 10.1016/j.cageo.2025.105981_bib27
  article-title: Machine learning for the geosciences: challenges and opportunities
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2861006
– volume: vol 102
  year: 2007
  ident: 10.1016/j.cageo.2025.105981_bib56
– volume: 41
  start-page: 585
  year: 2009
  ident: 10.1016/j.cageo.2025.105981_bib9
  article-title: Kriging in the presence of locally varying anisotropy using non-Euclidean distances
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-009-9229-1
– volume: 44
  start-page: 2168
  issue: 4
  year: 2020
  ident: 10.1016/j.cageo.2025.105981_bib45
  article-title: Small data challenges in big data era: a survey of recent progress on unsupervised and semi-supervised methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3031898
– volume: 48
  year: 1994
  ident: 10.1016/j.cageo.2025.105981_bib43
  article-title: Geología del cuadrángulo de Jauja
  publication-title: Instituto Geol. Minero y Metalúrgico del Perú, Bol
– volume: 137
  year: 2020
  ident: 10.1016/j.cageo.2025.105981_bib8
  article-title: ResIPy, an intuitive open source software for complex geoelectrical inversion/modeling
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2020.104423
– start-page: 751
  year: 2010
  ident: 10.1016/j.cageo.2025.105981_bib42
  article-title: Cross-domain sentiment classification via spectral feature alignment
– start-page: 770
  year: 2016
  ident: 10.1016/j.cageo.2025.105981_bib23
  article-title: Deep residual learning for image recognition
– start-page: 123
  year: 1968
  ident: 10.1016/j.cageo.2025.105981_bib39
  article-title: - Geología del cuadrángulo de Huancayo
  publication-title: Bol. Servicio de Geol. y Minería, No. 18
SSID ssj0002285
Score 2.4505825
Snippet Subsurface reconstruction is critical for geological modeling and resource exploration. Conventional spatial interpolation methods are limited by stationarity...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 105981
SubjectTerms Andes
Basin structure
Deep learning
Electrical resistivity
Geophysics
Huancayo basin
Title AI-based geological subsurface reconstruction using sparse convolutional autoencoders
URI https://dx.doi.org/10.1016/j.cageo.2025.105981
Volume 204
WOSCitedRecordID wos001502921300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0098-3004
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002285
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGFiQuiFWUTT5wK0aJE4_j44BKKYeKQwcNp8h27NFUJakyi8qf4DfzvCSZoaiiBy5WlhnH8vv0Nj1_D6G3lFlqMpuQRPKE5FynRGRGEDOucpYkJmVV5ZtN8NPTYjYTX0ejX91ZmM0Fr-vi6kpc_ldRwzMQtjs6ewtx95PCA7gGocMIYofxnwQ_OSHONFWHc9MrtiWoh3VrpXZNUnQzsMYern2uANRKG-rWN3FtjkJgvWoczWUVi-R7QoPYCGLpYQNfiVa0986n7UIZ8s2bs-CbNlW7mDdD1rSFW0k-OFbIUOb3vRlQ2r0-lj_gKtTyusT98D6wgYbuAmY7b0FZXwHX62JREMf3ta2LabwN2tT5fqGhyzVFH3IO5xDEz_0ZTsreD7_epdX-w9z1RYhdfdt56Scp3SRlmOQO2qecCVD0-5OTo9mX3rZTWrCOhdWtveOx8hWD19byd19ny385e4gexMADTwJgHqGRqR-je8ceIz-foGkHGzzABg-wwbuwwR42OMAG78AGb8PmKZp-Ojr7-JnElhtEUl6siNXWZqnmuRvHiaQytWmipMo0z4yVzMhc5JoZyyomU2YrJbW2mVDCFVSp7Bnaq5vaPEfYQmTNZGLTlKtcaSlM5uIJqSCCLnhhD9C7bnPKy8CsUt4gkgM07jawjLAOTl8JkLjpjy9u952X6P6A1ldoDzbWvEZ39Wa1WLZvIh5-A3DKi04
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-based+geological+subsurface+reconstruction+using+sparse+convolutional+autoencoders&rft.jtitle=Computers+%26+geosciences&rft.au=Uribe-Ventura%2C+Rodrigo&rft.au=Barriga-Berrios%2C+Yoan&rft.au=Barriga-Gamarra%2C+Jorge&rft.au=Baby%2C+Patrice&rft.date=2025-10-01&rft.issn=0098-3004&rft.volume=204&rft.spage=105981&rft_id=info:doi/10.1016%2Fj.cageo.2025.105981&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cageo_2025_105981
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon