Compressive wireless sensing

Compressive Sampling is an emerging theory that is based on the fact that a relatively small number of random projections of a signal can contain most of its salient information. In this paper, we introduce the concept of Compressive Wireless Sensing for sensor networks in which a fusion center retr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IPSN 2006 : the Fifth International Conference on Information Processing in Sensor Networks : April 19-21, 2006, Nashville, Tennessee, USA s. 134 - 142
Hlavní autoři: Bajwa, Waheed, Haupt, Jarvis, Sayeed, Akbar, Nowak, Robert
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: New York, NY, USA ACM 19.04.2006
IEEE
Edice:ACM Conferences
Témata:
ISBN:9781595933348, 1595933344
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Compressive Sampling is an emerging theory that is based on the fact that a relatively small number of random projections of a signal can contain most of its salient information. In this paper, we introduce the concept of Compressive Wireless Sensing for sensor networks in which a fusion center retrieves signal field information from an ensemble of spatially distributed sensor nodes. Energy and bandwidth are scarce resources in sensor networks and the relevant metrics of interest in our context are 1) the latency involved in information retrieval; and 2) the associated power-distortion trade-off. It is generally recognized that given sufficient prior knowledge about the sensed data (e.g., statistical characterization, homogeneity etc.), there exist schemes that have very favorable power-distortion-latency trade-offs. We propose a distributed matched source-channel communication scheme, based in part on recent results in compressive sampling theory, for estimation of sensed data at the fusion center and analyze, as a function of number of sensor nodes, the trade-offs between power, distortion and latency. Compressive wireless sensing is a universal scheme in the sense that it requires no prior knowledge about the sensed data. This universality, however, comes at the cost of optimality (in terms of a less favorable power-distortion-latency trade-off) and we quantify this cost relative to the case when sufficient prior information about the sensed data is assumed.
AbstractList Compressive Sampling is an emerging theory that is based on the fact that a relatively small number of random projections of a signal can contain most of its salient information. In this paper, we introduce the concept of Compressive Wireless Sensing for sensor networks in which a fusion center retrieves signal field information from an ensemble of spatially distributed sensor nodes. Energy and bandwidth are scarce resources in sensor networks and the relevant metrics of interest in our context are 1) the latency involved in information retrieval; and 2) the associated power-distortion trade-off. It is generally recognized that given sufficient prior knowledge about the sensed data (e.g., statistical characterization, homogeneity etc.), there exist schemes that have very favorable power-distortion-latency trade-offs. We propose a distributed matched source-channel communication scheme, based in part on recent results in compressive sampling theory, for estimation of sensed data at the fusion center and analyze, as a function of number of sensor nodes, the trade-offs between power, distortion and latency. Compressive wireless sensing is a universal scheme in the sense that it requires no prior knowledge about the sensed data. This universality, however, comes at the cost of optimality (in terms of a less favorable power-distortion-latency trade-off) and we quantify this cost relative to the case when sufficient prior information about the sensed data is assumed.
Author Haupt, Jarvis
Sayeed, Akbar
Nowak, Robert
Bajwa, Waheed
Author_xml – sequence: 1
  givenname: Waheed
  surname: Bajwa
  fullname: Bajwa, Waheed
  organization: University of Wisconsin, Madison, WI
– sequence: 2
  givenname: Jarvis
  surname: Haupt
  fullname: Haupt, Jarvis
  organization: University of Wisconsin, Madison, WI
– sequence: 3
  givenname: Akbar
  surname: Sayeed
  fullname: Sayeed, Akbar
  organization: University of Wisconsin, Madison, WI
– sequence: 4
  givenname: Robert
  surname: Nowak
  fullname: Nowak, Robert
  organization: University of Wisconsin, Madison, WI
BookMark eNqNULtOxDAQtARIwJGaAoqrEM0Fb_xIXKLoeEgn0UBt2ckaGfIivgPx9zhKPoBpZjUzuyvNOTnu-g4JuQSaAnBxB5DlEenEBYUjkqi8AKGEYozx4pQkIXzQCKYE5NkZuS77dhgxBP-N6x8_YhPndcAu-O79gpw40wRMFl6Rt4fta_m02b08Ppf3u42JX_abOrMGkZuKZU7JWtXSMhTKciNplEXNuXNVnVcopBJOAjMV2CjULmOUObYiN_PdYey_Dhj2uvWhwqYxHfaHoBlQxYHzGLyagx4R9TD61oy_GqTMuIDoprNrqlbbvv8MGqieetFLL3rpRdvR4_T39p8L7A-2TmPP
ContentType Conference Proceeding
Copyright 2006 ACM
Copyright_xml – notice: 2006 ACM
DBID 6IE
6IL
CBEJK
RIE
RIL
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1145/1127777.1127801
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 142
ExternalDocumentID 1662451
Genre orig-research
Conference Paper
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
ACM
ADPZR
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
IERZE
OCL
RIE
RIL
AAWTH
LHSKQ
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-a278t-d2baee4ac32f96d9d6b3e59b4a60e4a5d44ffcd7ce5695f613ac1bcd7df2303f3
IEDL.DBID RIE
ISBN 9781595933348
1595933344
ISICitedReferencesCount 186
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000238978000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Fri Jul 11 07:11:08 EDT 2025
Wed Aug 27 02:18:06 EDT 2025
Wed Jan 31 06:45:53 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords uncoded communications
compressive sampling
wireless sensor networks
Language English
License Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org
LinkModel DirectLink
MeetingName IPSN06: The Fifth International Conference on Information Processing in Sensor Networks 2006
MergedId FETCHMERGED-LOGICAL-a278t-d2baee4ac32f96d9d6b3e59b4a60e4a5d44ffcd7ce5695f613ac1bcd7df2303f3
Notes SourceType-Conference Papers & Proceedings-1
ObjectType-Conference Paper-1
content type line 25
PQID 31094144
PQPubID 23500
PageCount 9
ParticipantIDs acm_books_10_1145_1127777_1127801_brief
ieee_primary_1662451
acm_books_10_1145_1127777_1127801
proquest_miscellaneous_31094144
PublicationCentury 2000
PublicationDate 20060419
20060000
20060401
PublicationDateYYYYMMDD 2006-04-19
2006-01-01
2006-04-01
PublicationDate_xml – month: 04
  year: 2006
  text: 20060419
  day: 19
PublicationDecade 2000
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle IPSN 2006 : the Fifth International Conference on Information Processing in Sensor Networks : April 19-21, 2006, Nashville, Tennessee, USA
PublicationTitleAbbrev IPSN
PublicationYear 2006
Publisher ACM
IEEE
Publisher_xml – name: ACM
– name: IEEE
SSID ssj0000395172
Score 1.7729306
Snippet Compressive Sampling is an emerging theory that is based on the fact that a relatively small number of random projections of a signal can contain most of its...
Compressive sampling is an emerging theory that is based on the fact that a relatively small number of random projections of a signal can contain most of its...
SourceID proquest
ieee
acm
SourceType Aggregation Database
Publisher
StartPage 134
SubjectTerms Bandwidth
Character recognition
Computing methodologies -- Modeling and simulation -- Simulation theory -- Systems theory
Context
Cost function
Delay
Information retrieval
Information systems -- Data management systems -- Data structures -- Data layout -- Data compression
Mathematics of computing -- Information theory
Sampling methods
Security and privacy -- Cryptography -- Mathematical foundations of cryptography
Sensor fusion
Sensor phenomena and characterization
Theory of computation -- Computational complexity and cryptography -- Communication complexity
Wireless sensor networks
Title Compressive wireless sensing
URI https://ieeexplore.ieee.org/document/1662451
https://www.proquest.com/docview/31094144
WOSCitedRecordID wos000238978000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEvPlpxfa4geHHtZvPanMXiqfSg0FvIUwTdSl-_32S7bQUFcU_ZsIHwkc3MJPN9A3CDTC4U8zgziNGMeEXCPihsVjjEODZlHFUXm-DDYTkei1EL7jZcGOdcnXzm7mOzvsu3E7OIR2V9xFhBIl-6zTlbcbU25yk5Dr4Cj4FXMNA0hOmYkEbSaf1eNtI-iNB-cDN4eCKDhpexIkxbmY-mwsqPbbm2NYP9_83yAHpb0l462pijQ2i56gj2vukNduE8_v114uvSpVGk-D2001nMYa9ee_AyeHx-eMqa8giZCnOeZ7bQyjmiDC68YFZYprGjQhPF8tBNLSHeG8uNo0xQH-y2MkiHDutD3IE9PoZONancCaQ06rIrTpXHgnheams1EkpzRBw1OU7gOsAjo98_kysqM5UNhLKBMIHbP7-ROsT_PoFuRE1-rvQ0ZANYAldr2GVY4_HiQlVuspjJqF5KQuR3-vvAM9jdHoycQ2c-XbgL2DHL-dtselkvky_A_7TV
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKagvXqY4na6C4It1bXNrnsUxcY49TNhbSHORgXay2-836bpNUBD7lIYGwkeac05yvu8A3MQq4pJaFKqYkhBbid0-yHWYmJgypFI_qig2wXq9dDjk_Qrcrbkwxpgi-czc-2Zxl6_Hau6PyloxpQn2fOltXzmrZGutT1Qi5LwF5kMvZ6KJC9QRxqWo0-o9LcV9YkxaztFg7vEcGpb6mjBbUn2UNVZ-bMyFtWkf_G-eh3Cyoe0F_bVBOoKKyY9h_5viYA0a_v8vUl8XJvAyxe-uHUx9Fnv-dgKv7cfBQycsCySE0s15Fuokk8ZgqVBiOdVc0wwZwjMsaeS6icbYWqWZMoRyYp3llirOXIe2LvJAFp1CNR_n5gwC4pXZJSPSIo4tSzOts5jLjMXYEBWhOlw7eIT3_KdiSWYmooRQlBDW4fbPb0Q2GRlbh5pHTXwuFTVECVgdmivYhVvl_upC5mY8nwqvX4pd7Hf--8Am7HYGL13Rfeo9X8De5pikAdXZZG4uYUctZqPp5KpYMl9i4bge
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IPSN+2006+%3A+the+Fifth+International+Conference+on+Information+Processing+in+Sensor+Networks+%3A+April+19-21%2C+2006%2C+Nashville%2C+Tennessee%2C+USA&rft.atitle=Compressive+wireless+sensing&rft.au=Bajwa%2C+Waheed&rft.au=Haupt%2C+Jarvis&rft.au=Sayeed%2C+Akbar&rft.au=Nowak%2C+Robert&rft.date=2006-04-01&rft.isbn=9781595933348&rft.spage=134&rft.epage=142&rft_id=info:doi/10.1145%2F1127777.1127801&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781595933348/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781595933348/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781595933348/sc.gif&client=summon&freeimage=true