Scaling exact inference for discrete probabilistic programs

Probabilistic programming languages (PPLs) are an expressive means of representing and reasoning about probabilistic models. The computational challenge of probabilistic inference remains the primary roadblock for applying PPLs in practice. Inference is fundamentally hard, so there is no one-size-fi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of ACM on programming languages Ročník 4; číslo OOPSLA; s. 1 - 31
Hlavní autori: Holtzen, Steven, Van den Broeck, Guy, Millstein, Todd
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY, USA ACM 13.11.2020
Predmet:
ISSN:2475-1421, 2475-1421
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Probabilistic programming languages (PPLs) are an expressive means of representing and reasoning about probabilistic models. The computational challenge of probabilistic inference remains the primary roadblock for applying PPLs in practice. Inference is fundamentally hard, so there is no one-size-fits all solution. In this work, we target scalable inference for an important class of probabilistic programs: those whose probability distributions are discrete. Discrete distributions are common in many fields, including text analysis, network verification, artificial intelligence, and graph analysis, but they prove to be challenging for existing PPLs. We develop a domain-specific probabilistic programming language called Dice that features a new approach to exact discrete probabilistic program inference. Dice exploits program structure in order to factorize inference, enabling us to perform exact inference on probabilistic programs with hundreds of thousands of random variables. Our key technical contribution is a new reduction from discrete probabilistic programs to weighted model counting (WMC). This reduction separates the structure of the distribution from its parameters, enabling logical reasoning tools to exploit that structure for probabilistic inference. We (1) show how to compositionally reduce Dice inference to WMC, (2) prove this compilation correct with respect to a denotational semantics, (3) empirically demonstrate the performance benefits over prior approaches, and (4) analyze the types of structure that allow Dice to scale to large probabilistic programs.
AbstractList Probabilistic programming languages (PPLs) are an expressive means of representing and reasoning about probabilistic models. The computational challenge of probabilistic inference remains the primary roadblock for applying PPLs in practice. Inference is fundamentally hard, so there is no one-size-fits all solution. In this work, we target scalable inference for an important class of probabilistic programs: those whose probability distributions are discrete. Discrete distributions are common in many fields, including text analysis, network verification, artificial intelligence, and graph analysis, but they prove to be challenging for existing PPLs. We develop a domain-specific probabilistic programming language called Dice that features a new approach to exact discrete probabilistic program inference. Dice exploits program structure in order to factorize inference, enabling us to perform exact inference on probabilistic programs with hundreds of thousands of random variables. Our key technical contribution is a new reduction from discrete probabilistic programs to weighted model counting (WMC). This reduction separates the structure of the distribution from its parameters, enabling logical reasoning tools to exploit that structure for probabilistic inference. We (1) show how to compositionally reduce Dice inference to WMC, (2) prove this compilation correct with respect to a denotational semantics, (3) empirically demonstrate the performance benefits over prior approaches, and (4) analyze the types of structure that allow Dice to scale to large probabilistic programs.
Probabilistic programming languages (PPLs) are an expressive means of representing and reasoning about probabilistic models. The computational challenge of probabilistic inference remains the primary roadblock for applying PPLs in practice. Inference is fundamentally hard, so there is no one-size-fits all solution. In this work, we target scalable inference for an important class of probabilistic programs: those whose probability distributions are discrete . Discrete distributions are common in many fields, including text analysis, network verification, artificial intelligence, and graph analysis, but they prove to be challenging for existing PPLs. We develop a domain-specific probabilistic programming language called Dice that features a new approach to exact discrete probabilistic program inference. Dice exploits program structure in order to factorize inference, enabling us to perform exact inference on probabilistic programs with hundreds of thousands of random variables. Our key technical contribution is a new reduction from discrete probabilistic programs to weighted model counting (WMC). This reduction separates the structure of the distribution from its parameters, enabling logical reasoning tools to exploit that structure for probabilistic inference. We (1) show how to compositionally reduce Dice inference to WMC, (2) prove this compilation correct with respect to a denotational semantics, (3) empirically demonstrate the performance benefits over prior approaches, and (4) analyze the types of structure that allow Dice to scale to large probabilistic programs.
ArticleNumber 140
Author Van den Broeck, Guy
Holtzen, Steven
Millstein, Todd
Author_xml – sequence: 1
  givenname: Steven
  surname: Holtzen
  fullname: Holtzen, Steven
  email: sholtzen@cs.ucla.edu
  organization: University of California at Los Angeles, USA
– sequence: 2
  givenname: Guy
  surname: Van den Broeck
  fullname: Van den Broeck, Guy
  email: guyvdb@cs.ucla.edu
  organization: University of California at Los Angeles, USA
– sequence: 3
  givenname: Todd
  surname: Millstein
  fullname: Millstein, Todd
  email: todd@cs.ucla.edu
  organization: University of California at Los Angeles, USA
BookMark eNptz01LAzEQBuAgFay1ePe0N0-rySS72eBJil9Q8KCel9nppES2uyXJQf-9lqqIeJoZ3oeB91hMhnFgIU6VvFDKVJfaQAOyORBTMLYqlQE1-bUfiXlKr1JK5bRptJuKqyfCPgzrgt-QchEGz5EH4sKPsViFRJEzF9s4dtiFPqQcaHetI27SiTj02Ceef82ZeLm9eV7cl8vHu4fF9bJEsDaXbEBbIINcMdUE0MlVDRIdMGLTgKuc85WvPRiWVq8qyaytrYmstq4jPRPl_i_FMaXIvqWQMYdxyBFD3yrZ7sq3X-U__fkfv41hg_H9H3m2l0ibH_QdfgBjbWJA
CitedBy_id crossref_primary_10_1103_PhysRevResearch_6_033261
crossref_primary_10_1109_JSSC_2025_3561880
crossref_primary_10_1145_3656412
crossref_primary_10_1145_3591290
crossref_primary_10_1145_3729334
crossref_primary_10_1145_3720482
crossref_primary_10_1145_3632905
crossref_primary_10_1177_29498732251339951
crossref_primary_10_1098_rsos_230785
crossref_primary_10_1145_3704874
crossref_primary_10_1145_3473595
crossref_primary_10_1145_3571205
crossref_primary_10_1145_3586050
crossref_primary_10_1007_s11334_021_00433_3
crossref_primary_10_1145_3498677
crossref_primary_10_1145_3747534
crossref_primary_10_1145_3563347
crossref_primary_10_1145_3729325
crossref_primary_10_1016_j_ijar_2025_109369
crossref_primary_10_1145_3591220
crossref_primary_10_1145_3656448
crossref_primary_10_1145_3563341
crossref_primary_10_1145_3654988
crossref_primary_10_1145_3563344
crossref_primary_10_1145_3704846
crossref_primary_10_1145_3649822
crossref_primary_10_1145_3649844
Cites_doi 10.1007/978-3-662-46681-0_26
10.1145/1592434.1592438
10.1016/j.artint.2007.11.002
10.7551/mitpress/7432.003.0016
10.1145/2491411.2491423
10.1016/j.ijar.2005.10.001
10.1145/3133904
10.1109/TC.1986.1676819
10.1109/ICSE.2013.6606608
10.1613/jair.989
10.1007/978-3-319-63390-9_31
10.1007/978-3-642-93437-7_28
10.1609/aaai.v33i01.33017825
10.4230/LIPIcs.FSTTCS.2015.475
10.1017/S1471068414000076
10.1016/0169-2070(95)00664-8
10.1201/b10391
10.1016/B978-0-08-051489-5.50008-4
10.1145/2654822.2541958
10.1145/3296979.3192400
10.1007/978-3-662-49498-1_14
10.1145/155090.155113
10.1016/j.artint.2010.10.009
10.1007/978-3-642-19718-5_5
10.1007/978-3-642-58940-9
10.1017/S147106841100010X
10.1007/978-3-642-22110-1_47
10.1145/3296979.3192408
10.1016/j.ijar.2016.06.009
10.1007/978-3-642-28869-2_9
10.1111/biom.12369
10.1023/A:1008699807402
10.1017/CBO9780511811357
10.1561/1900000052
10.1145/3192366.3192409
10.1007/978-3-319-41528-4_4
10.1613/jair.505
10.1007/978-3-319-29604-3_5
10.1145/2499370.2462179
10.1023/A:1007421730016
10.1109/SFCS.1979.38
10.1145/3296979.3192399
10.1145/2338965.2336773
10.1023/A:1007665907178
10.1016/0924-980x(95)00252-g
10.1007/978-3-030-53291-8_15
ContentType Journal Article
Copyright Owner/Author
Copyright_xml – notice: Owner/Author
DBID AAYXX
CITATION
DOI 10.1145/3428208
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2475-1421
EndPage 31
ExternalDocumentID 10_1145_3428208
3428208
GrantInformation_xml – fundername: National Science Foundation
  grantid: IIS-1943641
– fundername: DARPA
  grantid: N66001-17-2-4032
GroupedDBID AAKMM
AAYFX
ACM
ADPZR
AIKLT
ALMA_UNASSIGNED_HOLDINGS
GUFHI
LHSKQ
M~E
OK1
ROL
AAYXX
AEFXT
AEJOY
AKRVB
CITATION
ID FETCH-LOGICAL-a277t-e42372c4ae5ec6c22b0d620a92eaa8829599f5f6f24e073d50ee3776cc7379bc3
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685203900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2475-1421
IngestDate Tue Nov 18 22:25:43 EST 2025
Sat Nov 29 07:49:08 EST 2025
Fri Feb 21 01:11:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue OOPSLA
Keywords Probabilistic programming
Language English
License This work is licensed under a Creative Commons Attribution International 4.0 License.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a277t-e42372c4ae5ec6c22b0d620a92eaa8829599f5f6f24e073d50ee3776cc7379bc3
OpenAccessLink https://dl.acm.org/doi/10.1145/3428208
PageCount 31
ParticipantIDs crossref_citationtrail_10_1145_3428208
crossref_primary_10_1145_3428208
acm_primary_3428208
PublicationCentury 2000
PublicationDate 2020-11-13
PublicationDateYYYYMMDD 2020-11-13
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-13
  day: 13
PublicationDecade 2020
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationTitle Proceedings of ACM on programming languages
PublicationTitleAbbrev ACM PACMPL
PublicationYear 2020
Publisher ACM
Publisher_xml – name: ACM
References Feras Saad and Vikash Mansinghka. 2016. A Probabilistic Programming Approach To Probabilistic Data Analysis. In Advances in Neural Information Processing Systems (NIPS).
Adnan Darwiche. 2009. Modeling and Reasoning with Bayesian Networks. Cambridge University Press. https://doi.org/10. 1017/CBO9780511811357 10.1017/CBO9780511811357
Jaco Geldenhuys, Matthew B Dwyer, and Willem Visser. 2012. Probabilistic symbolic execution. In Proceedings of the 2012 International Symposium on Software Testing and Analysis. ACM, 166-176. https://doi.org/10.1145/2338965.2336773 10.1145/2338965.2336773
Johan Henri Petrus Kwisthout. 2009. The computational complexity of probabilistic networks. Utrecht University.
Vikash Mansinghka, Tejas D Kulkarni, Yura N Perov, and Josh Tenenbaum. 2013. Approximate bayesian image interpretation using generative probabilistic graphics programs. In Advances in Neural Information Processing Systems. 1520-1528.
Vaishak Belle, Andrea Passerini, and Guy Van den Broeck. 2015. Probabilistic Inference in Hybrid Domains by Weighted Model Integration. In Proc. of IJCAI. 2770-2776.
Marco Cusumano-Towner, Benjamin Bichsel, Timon Gehr, Martin Vechev, and Vikash K Mansinghka. 2018. Incremental inference for probabilistic programs. In ACM SIGPLAN Notices, Vol. 53. ACM, 571-585. https://doi.org/10.1145/3296979. 3192399 10.1145/3296979.3192399
Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. Psi: Exact symbolic inference for probabilistic programs. In International Conference on Computer Aided Verification. Springer, 62-83.
Jonathan Katz, Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. 1996. Handbook of applied cryptography. CRC press.
Avi Pfefer. 2007b. The Design and Implementation of IBAL: A General-Purpose Probabilistic Language. Introduction to statistical relational learning 1993 ( 2007 ), 399.
Tian Sang, Paul Beame, and Henry A Kautz. 2005. Performing Bayesian inference by weighted model counting. In AAAI, Vol. 5. 475-481.
Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar. 2015. Approximate Counting in SMT and Value Estimation for Probabilistic Programs. In Proc. of TACAS. Springer-Verlag New York, Inc., New York, NY, USA, 320-334. https: //doi.org/10.1007/978-3-662-46681-0_26 10.1007/978-3-662-46681-0_26
R. Bryant. 1986. Graph-based algorithms for Boolean function manipulation. IEEE TC C-35 ( 1986 ), 677-691. https: //doi.org/10.1109/TC. 1986.1676819 10.1109/TC.1986.1676819
Steen Andreassen, Finn V Jensen, Stig Kjaer Andersen, B Falck, U Kjaerulf, M Woldbye, AR Sørensen, A Rosenfalck, and F Jensen. 1989. MUNIN: an expert EMG Assistant. In Computer-aided electromyography and expert systems. Pergamon Press, 255-277. https://doi.org/10.1016/ 0924-980x ( 95 ) 00252-g 10.1016/0924-980x(95)00252-g
Christoph Meinel and Thorsten Theobald. 1998. Algorithms and Data Structures in VLSI Design: OBDD-foundations and applications. Springer Verlag. https://doi.org/10.1007/978-3-642-58940-9 10.1007/978-3-642-58940-9
Fabrizio Riguzzi and Terrance Swift. 2011. The PITA System: Tabling and Answer Subsumption for Reasoning under Uncertainty. Theory and Practice of Logic Programming 11, 4-5 ( 2011 ), 433-449. https://doi.org/10.1017/S147106841100010X 10.1017/S147106841100010X
Marcell Vazquez-Chanlatte and Sanjit A Seshia. 2020. Maximum Causal Entropy Specification Inference from Demonstrations. In International Conference on Computer Aided Verification. Springer.
Di Wang, Jan Hofmann, and Thomas Reps. 2018. PMAF: An Algebraic Framework for Static Analysis of Probabilistic Programs. SIGPLAN Not. 53, 4 ( June 2018 ), 513-528. https://doi.org/10.1145/3296979.3192408 10.1145/3296979.3192408
Chung-kil Hur, Aditya V. Nori, Sriram K. Rajamani, and Selva Sammuel. 2015. A Provably Correct Sampler for Probabilistic Programs. FSTTCS FSTTCS ( 2015 ), 1-14. https://doi.org/10.4230/LIPIcs.FSTTCS. 2015.475 10.4230/LIPIcs.FSTTCS.2015.475
Dexter Kozen. 1979. Semantics of Probabilistic Programs. In Proceedings of the 20th Annual Symposium on Foundations of Computer Science (SFCS '79). IEEE Computer Society, Washington, DC, USA, 101-114. https://doi.org/10.1109/SFCS. 1979. 38 10.1109/SFCS.1979.38
Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. 2017. A storm is coming: A modern probabilistic model checker. In International Conference on Computer Aided Verification. Springer, 592-600.
Fritz Obermeyer, Eli Bingham, Martin Jankowiak, Neeraj Pradhan, Justin Chiu, Alexander Rush, and Noah Goodman. 2019. Tensor variable elimination for plated factor graphs. ( 2019 ), 4871-4880.
John Binder, Daphne Koller, Stuart Russell, and Keiji Kanazawa. 1997. Adaptive probabilistic networks with hidden variables. Machine Learning 29, 2-3 ( 1997 ), 213-244. https://doi.org/10.1023/A:1007421730016 10.1023/A:1007421730016
Mark Chavira and Adnan Darwiche. 2005. Compiling Bayesian networks with local structure. In IJCAI. 1306-1312.
Frank Wood, Jan Willem Meent, and Vikash Mansinghka. 2014. A new approach to probabilistic programming inference. In Artificial Intelligence and Statistics. 1024-1032.
Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2020. Scaling Exact Inference for Discrete Probabilistic Programs. arXiv:arXiv: 2005.09089
Yuan Zhou, Hongseok Yang, Yee Whye Teh, and Tom Rainforth. 2020. Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support. International Conference on Machine Learning ( 2020 ).
Jonas Vlasselaer, Guy Van den Broeck, Angelika Kimmig, Wannes Meert, and Luc De Raedt. 2015. Anytime inference in probabilistic logic programs with Tp-compilation. In Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI). https://doi.org/10.1016/j.ijar. 2016. 06.009 10.1016/j.ijar.2016.06.009
Bradley Gram-Hansen, Yuan Zhou, Tobias Kohn, Tom Rainforth, Hongseok Yang, and Frank Wood. 2018. Hamiltonian Monte Carlo for Probabilistic Programs with Discontinuities. arXiv preprint arXiv: 1804. 03523 ( 2018 ).
Antonio Filieri, Corina S Păsăreanu, and Willem Visser. 2013. Reliability analysis in symbolic pathfinder. In 2013 35th International Conference on Software Engineering (ICSE). IEEE, 622-631.
Pedro Zuidberg Dos Martires, Anton Dries, and Luc De Raedt. 2019. Exact and Approximate Weighted Model Integration with Probability Density Functions Using Knowledge Compilation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 7825-7833.
Maria I Gorinova, Dave Moore, and Matthew D Hofman. 2020. Automatic Reparameterisation of Probabilistic Programs. International Conference on Machine Learning (ICML) ( 2020 ).
Ranjit Jhala and Rupak Majumdar. 2009. Software model checking. Comput. Surveys 41, 4 ( 2009 ), 1-54. https://doi.org/10. 1145/1592434.1592438 10.1145/1592434.1592438
Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. 2016. Probabilistic inference by program transformation in Hakaru (system description). In International Symposium on Functional and Logic Programming-13th International Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings. Springer, 62-79. https://doi.org/ 10.1007/978-3-319-29604-3_5 10.1007/978-3-319-29604-3_5
Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani. 2013. Static Analysis for Probabilistic Programs: Inferring Whole Program Properties from Finitely Many Paths. SIGPLAN Not. 48, 6 ( June 2013 ), 447-458. https: //doi.org/10.1145/2499370.2462179 10.1145/2499370.2462179
A. Darwiche and P. Marquis. 2002. A Knowledge Compilation Map. Journal of Artificial Intelligence Research 17 ( 2002 ), 229-264.
Craig Boutilier, Nir Friedman, Moises Goldszmidt, and Daphne Koller. 1996. Context-specific independence in Bayesian networks. In Proceedings of the Twelfth international conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 115-123.
Aditya V Nori, Chung-Kil Hur, Sriram K Rajamani, and Selva Samuel. 2014. R2: An Eficient MCMC Sampler for Probabilistic Programs. In AAAI. 2476-2482.
Avi Pfefer. 2007a. A general importance sampling algorithm for probabilistic programs. ( 2007 ). http://nrs.harvard.edu/urn3:HUL. InstRepos:25235125
Ingo A Beinlich, Henri Jacques Suermondt, R Martin Chavez, and Gregory F Cooper. 1989. The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks. In AIME 89. Springer, 247-256. https://doi.org/10.1007/978-3-642-93437-7_28 10.1007/978-3-642-93437-7_28
Marta Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Verification of Probabilistic Real-time Systems. In Proceedings of the 23rd International Conference on Computer Aided Verification (Snowbird, UT) (CAV'11). Springer-Verlag, Berlin, Heidelberg, 585-591. https://doi.org/10.1007/978-3-642-22110-1_47 10.1007/978-3-642-22110-1_47
Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2018. Sound abstraction and decomposition of probabilistic programs. In Proceedings of the 35th International Conference on Machine Learning (ICML).
R Iris Bahar, Erica A Frohm, Charles M Gaona, Gary D Hachtel, Enrico Macii, Abelardo Pardo, and Fabio Somenzi. 1997. Algebric decision diagrams and their applications. Formal methods in system design 10, 2-3 ( 1997 ), 171-206.
V. Gogate and R. Dechter. 2011. SampleSearch: Importance sampling in presence of determinism. Artificial Intelligence 175, 2 ( 2011 ), 694-729.
Agnieszka Onisko. 2003. Probabilistic causal models in medicine: Application to diagnosis of liver disorders. In Ph. D. dissertation, Inst. Biocybern. Biomed. Eng., Polish Academy Sci., Warsaw, Poland.
Bruce Abramson, John Brown, Ward Edwards, Allan Murphy, and Robert L Winkler. 1996. Hailfinder: A Bayesian system for forecasting severe weather. International Journal of Forecasting 12, 1 ( 1996 ), 57-71. https://doi.org/10.1016/ 0169-2070 ( 95 ) 00664-8 10.1016/0169-2070(95)00664-8
Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The Essence of Compiling with Continuations. In Proceedings of the ACM SIGPL
e_1_2_2_4_1
e_1_2_2_24_1
e_1_2_2_49_1
e_1_2_2_22_1
e_1_2_2_20_1
e_1_2_2_2_1
Belle Vaishak (e_1_2_2_6_1) 2015
e_1_2_2_62_1
e_1_2_2_64_1
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_45_1
e_1_2_2_66_1
e_1_2_2_26_1
e_1_2_2_68_1
Pfefer Avi (e_1_2_2_72_1) 2018
Bingham Eli (e_1_2_2_9_1) 2019; 20
e_1_2_2_83_1
Carpenter Bob (e_1_2_2_14_1) 2016
e_1_2_2_60_1
e_1_2_2_81_1
Kucukelbir Alp (e_1_2_2_55_1) 2017; 18
Wood Frank (e_1_2_2_84_1) 2014
e_1_2_2_13_1
Biere Armin (e_1_2_2_7_1)
e_1_2_2_11_1
Hofman Matthew D (e_1_2_2_42_1) 2014; 15
Raedt Luc De (e_1_2_2_27_1) 2007; 7
e_1_2_2_30_1
Gram-Hansen Bradley (e_1_2_2_41_1) 1804
e_1_2_2_51_1
e_1_2_2_76_1
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_53_1
e_1_2_2_74_1
e_1_2_2_17_1
e_1_2_2_34_1
Boutilier Craig (e_1_2_2_12_1) 1996
Sang Tian (e_1_2_2_75_1) 2005; 5
e_1_2_2_36_1
e_1_2_2_78_1
Holtzen Steven (e_1_2_2_43_1) 2018
e_1_2_2_70_1
Darwiche Adnan (e_1_2_2_25_1) 2011
Pfefer Avi (e_1_2_2_71_1) 2009
Mansinghka Vikash (e_1_2_2_59_1) 2013
e_1_2_2_48_1
e_1_2_2_5_1
e_1_2_2_23_1
e_1_2_2_1_1
McCallum A (e_1_2_2_61_1) 2009
e_1_2_2_3_1
e_1_2_2_63_1
Chavira Mark (e_1_2_2_16_1) 2005
e_1_2_2_29_1
e_1_2_2_46_1
Nori Aditya V (e_1_2_2_65_1) 2014
e_1_2_2_69_1
Goodman Noah D. (e_1_2_2_38_1)
Katz Jonathan (e_1_2_2_50_1) 1996
e_1_2_2_82_1
e_1_2_2_80_1
Zeng Zhe (e_1_2_2_85_1) 2020
Holtzen Steven (e_1_2_2_44_1) 2020
Clarke Edmund M. (e_1_2_2_21_1) 1999
Gorinova Maria I (e_1_2_2_40_1) 2020
e_1_2_2_37_1
e_1_2_2_39_1
Petrus Kwisthout Johan Henri (e_1_2_2_57_1)
e_1_2_2_10_1
e_1_2_2_52_1
e_1_2_2_31_1
e_1_2_2_54_1
e_1_2_2_73_1
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_56_1
e_1_2_2_79_1
e_1_2_2_35_1
e_1_2_2_58_1
e_1_2_2_77_1
Onisko Agnieszka (e_1_2_2_67_1)
Zhou Yuan (e_1_2_2_86_1) 2020
Chaganty Arun (e_1_2_2_15_1) 2013
References_xml – reference: T. Minka, J.M. Winn, J.P. Guiver, S. Webster, Y. Zaykov, B. Yangel, A. Spengler, and J. Bronskill. 2014. Infer.NET 2.6. Microsoft Research Cambridge. http://research.microsoft.com/infernet.
– reference: Guy Van den Broeck and Dan Suciu. 2017. Query Processing on Probabilistic Data: A Survey. Now Publishers. https: //doi.org/10.1561/1900000052 10.1561/1900000052
– reference: Armin Biere. 2009. Bounded Model Checking. In Handbook of Satisfiability, Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh (Eds.). Frontiers in Artificial Intelligence and Applications, Vol. 185. IOS Press, Chapter 14.
– reference: Mark Chavira and Adnan Darwiche. 2005. Compiling Bayesian networks with local structure. In IJCAI. 1306-1312.
– reference: V. Gogate and R. Dechter. 2011. SampleSearch: Importance sampling in presence of determinism. Artificial Intelligence 175, 2 ( 2011 ), 694-729.
– reference: Antonio Filieri, Corina S Păsăreanu, and Willem Visser. 2013. Reliability analysis in symbolic pathfinder. In 2013 35th International Conference on Software Engineering (ICSE). IEEE, 622-631.
– reference: David Wingate and Theophane Weber. 2013. Automated variational inference in probabilistic programming. arXiv preprint arXiv:1301.1299 ( 2013 ).
– reference: Johannes Borgström, Andrew D Gordon, Michael Greenberg, James Margetson, and Jurgen Van Gael. 2011. Measure transformer semantics for Bayesian machine learning. In European symposium on programming. Springer, 77-96.
– reference: Avi Pfefer. 2007a. A general importance sampling algorithm for probabilistic programs. ( 2007 ). http://nrs.harvard.edu/urn3:HUL. InstRepos:25235125
– reference: R. Bryant. 1986. Graph-based algorithms for Boolean function manipulation. IEEE TC C-35 ( 1986 ), 677-691. https: //doi.org/10.1109/TC. 1986.1676819 10.1109/TC.1986.1676819
– reference: Fritz Obermeyer, Eli Bingham, Martin Jankowiak, Neeraj Pradhan, Justin Chiu, Alexander Rush, and Noah Goodman. 2019. Tensor variable elimination for plated factor graphs. ( 2019 ), 4871-4880.
– reference: Jaco Geldenhuys, Matthew B Dwyer, and Willem Visser. 2012. Probabilistic symbolic execution. In Proceedings of the 2012 International Symposium on Software Testing and Analysis. ACM, 166-176. https://doi.org/10.1145/2338965.2336773 10.1145/2338965.2336773
– reference: Di Wang, Jan Hofmann, and Thomas Reps. 2018. PMAF: An Algebraic Framework for Static Analysis of Probabilistic Programs. SIGPLAN Not. 53, 4 ( June 2018 ), 513-528. https://doi.org/10.1145/3296979.3192408 10.1145/3296979.3192408
– reference: Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The Essence of Compiling with Continuations. In Proceedings of the ACM SIGPLAN'93 Conference on Programming Language Design and Implementation (PLDI), Albuquerque, New Mexico, USA, June 23-25, 1993, Robert Cartwright (Ed.). ACM, 237-247. https://doi.org/10.1145/155090.155113 10.1145/155090.155113
– reference: Kevin B Korb and Ann E Nicholson. 2010. Bayesian artificial intelligence. CRC press. https://doi.org/10.1201/b10391 10.1201/b10391
– reference: Feras Saad and Vikash Mansinghka. 2016. A Probabilistic Programming Approach To Probabilistic Data Analysis. In Advances in Neural Information Processing Systems (NIPS).
– reference: Mark Chavira and Adnan Darwiche. 2008. On Probabilistic Inference by Weighted Model Counting. J. Artificial Intelligence 172, 6-7 ( April 2008 ), 772-799. https://doi.org/10.1016/j.artint. 2007. 11.002 10.1016/j.artint.2007.11.002
– reference: D. Koller and N. Friedman. 2009. Probabilistic graphical models: principles and techniques. MIT press.
– reference: Avi Pfefer, Brian Ruttenberg, William Kretschmer, and Alison OConnor. 2018. Structured Factored Inference for Probabilistic Programming. In International Conference on Artificial Intelligence and Statistics. 1224-1232.
– reference: Tian Sang, Paul Beame, and Henry A Kautz. 2005. Performing Bayesian inference by weighted model counting. In AAAI, Vol. 5. 475-481.
– reference: Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2020. Scaling Exact Inference for Discrete Probabilistic Programs. arXiv:arXiv: 2005.09089
– reference: James Bornholt, Todd Mytkowicz, and Kathryn S McKinley. 2014. Uncertain: A first-order type for uncertain data. In ACM SIGPLAN Notices, Vol. 49. ACM, 51-66. https://doi.org/10.1145/2654822.2541958 10.1145/2654822.2541958
– reference: Pedro Zuidberg Dos Martires, Anton Dries, and Luc De Raedt. 2019. Exact and Approximate Weighted Model Integration with Probability Density Functions Using Knowledge Compilation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 7825-7833.
– reference: Aditya V Nori, Chung-Kil Hur, Sriram K Rajamani, and Selva Samuel. 2014. R2: An Eficient MCMC Sampler for Probabilistic Programs. In AAAI. 2476-2482.
– reference: Jonas Vlasselaer, Guy Van den Broeck, Angelika Kimmig, Wannes Meert, and Luc De Raedt. 2015. Anytime inference in probabilistic logic programs with Tp-compilation. In Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI). https://doi.org/10.1016/j.ijar. 2016. 06.009 10.1016/j.ijar.2016.06.009
– reference: Daniel Huang and Greg Morrisett. 2016. An Application of Computable Distributions to the Semantics of Probabilistic Programming Languages. In Proceedings of the 25th European Symposium on Programming Languages and Systems-Volume 9632. Springer-Verlag New York, Inc., New York, NY, USA, 337-363. https://doi.org/10.1007/978-3-662-49498-1_14 10.1007/978-3-662-49498-1_14
– reference: Adnan Darwiche. 2011. SDD: A new canonical representation of propositional knowledge bases. In IJCAI ProceedingsInternational Joint Conference on Artificial Intelligence. 819.
– reference: A. Darwiche and P. Marquis. 2002. A Knowledge Compilation Map. Journal of Artificial Intelligence Research 17 ( 2002 ), 229-264.
– reference: Johan Henri Petrus Kwisthout. 2009. The computational complexity of probabilistic networks. Utrecht University.
– reference: Marco Scutari and Jean-Baptiste Denis. 2014. Bayesian networks: with examples in R. CRC press. https://doi.org/10.1111/ biom.12369 10.1111/biom.12369
– reference: John Binder, Daphne Koller, Stuart Russell, and Keiji Kanazawa. 1997. Adaptive probabilistic networks with hidden variables. Machine Learning 29, 2-3 ( 1997 ), 213-244. https://doi.org/10.1023/A:1007421730016 10.1023/A:1007421730016
– reference: Judea Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann.
– reference: Adnan Darwiche. 2009. Modeling and Reasoning with Bayesian Networks. Cambridge University Press. https://doi.org/10. 1017/CBO9780511811357 10.1017/CBO9780511811357
– reference: Noah D Goodman and Andreas Stuhlmüller. 2014. The design and implementation of probabilistic programming languages.
– reference: Matthew D Hofman and Andrew Gelman. 2014. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research 15, 1 ( 2014 ), 1593-1623.
– reference: Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani. 2013. Static Analysis for Probabilistic Programs: Inferring Whole Program Properties from Finitely Many Paths. SIGPLAN Not. 48, 6 ( June 2013 ), 447-458. https: //doi.org/10.1145/2499370.2462179 10.1145/2499370.2462179
– reference: M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, and L.K. Saul. 1999. An introduction to variational methods for graphical models. Machine learning 37, 2 ( 1999 ), 183-233. https://doi.org/10.1023/A:1007665907178 10.1023/A:1007665907178
– reference: Marta Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Verification of Probabilistic Real-time Systems. In Proceedings of the 23rd International Conference on Computer Aided Verification (Snowbird, UT) (CAV'11). Springer-Verlag, Berlin, Heidelberg, 585-591. https://doi.org/10.1007/978-3-642-22110-1_47 10.1007/978-3-642-22110-1_47
– reference: Vaishak Belle, Andrea Passerini, and Guy Van den Broeck. 2015. Probabilistic Inference in Hybrid Domains by Weighted Model Integration. In Proc. of IJCAI. 2770-2776.
– reference: Patrick Cousot and Michael Monerau. 2012. Probabilistic abstract interpretation. In Proc. of ESOP. 169-193. https: //doi.org/10.1007/978-3-642-28869-2_9 10.1007/978-3-642-28869-2_9
– reference: Joshua V Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave Moore, Brian Patton, Alex Alemi, Matt Hofman, and Rif A Saurous. 2017. TensorFlow Distributions. arXiv preprint arXiv:1711.10604 ( 2017 ).
– reference: Arun Chaganty, Aditya Nori, and Sriram Rajamani. 2013. Eficiently sampling probabilistic programs via program analysis. In Artificial Intelligence and Statistics. 153-160.
– reference: Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo Thon, Gerda Janssens, and Luc De Raedt. 2015. Inference and learning in probabilistic logic programs using weighted Boolean formulas. J. Theory and Practice of Logic Programming 15 ( 3 ) ( 2015 ), 358-401. https://doi.org/10.1017/S1471068414000076 10.1017/S1471068414000076
– reference: Dexter Kozen. 1979. Semantics of Probabilistic Programs. In Proceedings of the 20th Annual Symposium on Foundations of Computer Science (SFCS '79). IEEE Computer Society, Washington, DC, USA, 101-114. https://doi.org/10.1109/SFCS. 1979. 38 10.1109/SFCS.1979.38
– reference: Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman. 2019. Pyro: Deep universal probabilistic programming. The Journal of Machine Learning Research 20, 1 ( 2019 ), 973-978.
– reference: Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M Blei. 2017. Automatic diferentiation variational inference. The Journal of Machine Learning Research 18, 1 ( 2017 ), 430-474.
– reference: Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B. Tenenbaum. 2008. Church: a language for generative models. In Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence (UAI).
– reference: Jonathan Katz, Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. 1996. Handbook of applied cryptography. CRC press.
– reference: Avi Pfefer. 2009. Figaro: An object-oriented probabilistic programming language. Charles River Analytics Technical Report 137 ( 2009 ).
– reference: Chung-kil Hur, Aditya V. Nori, Sriram K. Rajamani, and Selva Sammuel. 2015. A Provably Correct Sampler for Probabilistic Programs. FSTTCS FSTTCS ( 2015 ), 1-14. https://doi.org/10.4230/LIPIcs.FSTTCS. 2015.475 10.4230/LIPIcs.FSTTCS.2015.475
– reference: Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. 2016. Probabilistic inference by program transformation in Hakaru (system description). In International Symposium on Functional and Logic Programming-13th International Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings. Springer, 62-79. https://doi.org/ 10.1007/978-3-319-29604-3_5 10.1007/978-3-319-29604-3_5
– reference: Agnieszka Onisko. 2003. Probabilistic causal models in medicine: Application to diagnosis of liver disorders. In Ph. D. dissertation, Inst. Biocybern. Biomed. Eng., Polish Academy Sci., Warsaw, Poland.
– reference: Guillaume Claret, Sriram K. Rajamani, Aditya V. Nori, Andrew D. Gordon, and Johannes Borgström. 2013. Bayesian inference using data flow analysis. Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering-ESEC/FSE 2013 ( 2013 ), 92. https://doi.org/10.1145/2491411.2491423 10.1145/2491411.2491423
– reference: Steen Andreassen, Finn V Jensen, Stig Kjaer Andersen, B Falck, U Kjaerulf, M Woldbye, AR Sørensen, A Rosenfalck, and F Jensen. 1989. MUNIN: an expert EMG Assistant. In Computer-aided electromyography and expert systems. Pergamon Press, 255-277. https://doi.org/10.1016/ 0924-980x ( 95 ) 00252-g 10.1016/0924-980x(95)00252-g
– reference: Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2018. Sound abstraction and decomposition of probabilistic programs. In Proceedings of the 35th International Conference on Machine Learning (ICML).
– reference: R Iris Bahar, Erica A Frohm, Charles M Gaona, Gary D Hachtel, Enrico Macii, Abelardo Pardo, and Fabio Somenzi. 1997. Algebric decision diagrams and their applications. Formal methods in system design 10, 2-3 ( 1997 ), 171-206.
– reference: Craig Boutilier, Nir Friedman, Moises Goldszmidt, and Daphne Koller. 1996. Context-specific independence in Bayesian networks. In Proceedings of the Twelfth international conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 115-123.
– reference: Aws Albarghouthi, Loris D'Antoni, Samuel Drews, and Aditya V. Nori. 2017. FairSquare: Probabilistic Verification of Program Fairness. Proc. ACM Program. Lang. 1, OOPSLA, Article 80 (Oct. 2017 ), 30 pages. https://doi.org/10.1145/3133904 10.1145/3133904
– reference: Ingo A Beinlich, Henri Jacques Suermondt, R Martin Chavez, and Gregory F Cooper. 1989. The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks. In AIME 89. Springer, 247-256. https://doi.org/10.1007/978-3-642-93437-7_28 10.1007/978-3-642-93437-7_28
– reference: A McCallum, K Schultz, and S Singh. 2009. Factorie: Probabilistic programming via imperatively defined factor graphs. Proc. of NIPS 22 ( 2009 ), 1249-1257.
– reference: Zhe Zeng and Guy Van den Broeck. 2020. Eficient search-based weighted model integration. In Uncertainty in Artificial Intelligence. PMLR, 175-185.
– reference: Vikash Mansinghka, Tejas D Kulkarni, Yura N Perov, and Josh Tenenbaum. 2013. Approximate bayesian image interpretation using generative probabilistic graphics programs. In Advances in Neural Information Processing Systems. 1520-1528.
– reference: FV Jensen, U Kjaerulf, KG Olesen, and J Pedersen. 1989. An expert system for control of waste water treatment-a pilot project. Technical Report. Technical report, Judex Datasystemer A/S, Aalborg, 1989. In Danish.
– reference: Bruce Abramson, John Brown, Ward Edwards, Allan Murphy, and Robert L Winkler. 1996. Hailfinder: A Bayesian system for forecasting severe weather. International Journal of Forecasting 12, 1 ( 1996 ), 57-71. https://doi.org/10.1016/ 0169-2070 ( 95 ) 00664-8 10.1016/0169-2070(95)00664-8
– reference: Maria I Gorinova, Dave Moore, and Matthew D Hofman. 2020. Automatic Reparameterisation of Probabilistic Programs. International Conference on Machine Learning (ICML) ( 2020 ).
– reference: Christoph Meinel and Thorsten Theobald. 1998. Algorithms and Data Structures in VLSI Design: OBDD-foundations and applications. Springer Verlag. https://doi.org/10.1007/978-3-642-58940-9 10.1007/978-3-642-58940-9
– reference: Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar. 2015. Approximate Counting in SMT and Value Estimation for Probabilistic Programs. In Proc. of TACAS. Springer-Verlag New York, Inc., New York, NY, USA, 320-334. https: //doi.org/10.1007/978-3-662-46681-0_26 10.1007/978-3-662-46681-0_26
– reference: Michael L Littman, Judy Goldsmith, and Martin Mundhenk. 1998. The computational complexity of probabilistic planning. Journal of Artificial Intelligence Research 9 ( 1998 ), 1-36. https://doi.org/10.1613/jair.505 10.1613/jair.505
– reference: Ranjit Jhala and Rupak Majumdar. 2009. Software model checking. Comput. Surveys 41, 4 ( 2009 ), 1-54. https://doi.org/10. 1145/1592434.1592438 10.1145/1592434.1592438
– reference: Bob Carpenter, Andrew Gelman, Matt Hofman, Daniel Lee, Ben Goodrich, Michael Betancourt, Michael A Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. 2016. Stan: A probabilistic programming language. Journal of Statistical Software ( 2016 ).
– reference: Frank Wood, Jan Willem Meent, and Vikash Mansinghka. 2014. A new approach to probabilistic programming inference. In Artificial Intelligence and Statistics. 1024-1032.
– reference: Avi Pfefer. 2007b. The Design and Implementation of IBAL: A General-Purpose Probabilistic Language. Introduction to statistical relational learning 1993 ( 2007 ), 399.
– reference: Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. 1999. Model Checking. MIT Press, Cambridge, MA, USA.
– reference: Marco Cusumano-Towner, Benjamin Bichsel, Timon Gehr, Martin Vechev, and Vikash K Mansinghka. 2018. Incremental inference for probabilistic programs. In ACM SIGPLAN Notices, Vol. 53. ACM, 571-585. https://doi.org/10.1145/3296979. 3192399 10.1145/3296979.3192399
– reference: Vikash K. Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, and Martin Rinard. 2018. Probabilistic Programming with Programmable Inference. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (Philadelphia, PA, USA) ( PLDI 2018). ACM, New York, NY, USA, 603-616. https: //doi.org/10.1145/3192366.3192409 10.1145/3192366.3192409
– reference: Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. Psi: Exact symbolic inference for probabilistic programs. In International Conference on Computer Aided Verification. Springer, 62-83.
– reference: Jan-Willem van de Meent, Hongseok Yang, Vikash Mansinghka, and Frank Wood. 2015. Particle Gibbs with Ancestor Sampling for Probabilistic Programs. In AISTATS.
– reference: Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. 2007. ProbLog: A Probabilistic Prolog and Its Application in Link Discovery. In Proceedings of IJCAI, Vol. 7. 2462-2467.
– reference: Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. 2017. A storm is coming: A modern probabilistic model checker. In International Conference on Computer Aided Verification. Springer, 592-600.
– reference: Alp Kucukelbir, Rajesh Ranganath, Andrew Gelman, and David Blei. 2015. Automatic variational inference in Stan. In Advances in neural information processing systems. 568-576.
– reference: Yuan Zhou, Hongseok Yang, Yee Whye Teh, and Tom Rainforth. 2020. Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support. International Conference on Machine Learning ( 2020 ).
– reference: Mark Chavira, Adnan Darwiche, and Manfred Jaeger. 2006. Compiling relational Bayesian networks for exact inference. International Journal of Approximate Reasoning 42, 1 ( 2006 ), 4-20.
– reference: Fabrizio Riguzzi and Terrance Swift. 2011. The PITA System: Tabling and Answer Subsumption for Reasoning under Uncertainty. Theory and Practice of Logic Programming 11, 4-5 ( 2011 ), 433-449. https://doi.org/10.1017/S147106841100010X 10.1017/S147106841100010X
– reference: Marcell Vazquez-Chanlatte and Sanjit A Seshia. 2020. Maximum Causal Entropy Specification Inference from Demonstrations. In International Conference on Computer Aided Verification. Springer.
– reference: Timon Gehr, Sasa Misailovic, Petar Tsankov, Laurent Vanbever, Pascal Wiesmann, and Martin Vechev. 2018. Bayonet: probabilistic inference for networks. In ACM SIGPLAN Notices, Vol. 53. ACM, 586-602. https://doi.org/10.1145/3296979. 3192400 10.1145/3296979.3192400
– reference: Bradley Gram-Hansen, Yuan Zhou, Tobias Kohn, Tom Rainforth, Hongseok Yang, and Frank Wood. 2018. Hamiltonian Monte Carlo for Probabilistic Programs with Discontinuities. arXiv preprint arXiv: 1804. 03523 ( 2018 ).
– start-page: 175
  year: 2020
  ident: e_1_2_2_85_1
  article-title: Eficient search-based weighted model integration. In Uncertainty in Artificial Intelligence
  publication-title: PMLR
– ident: e_1_2_2_19_1
  doi: 10.1007/978-3-662-46681-0_26
– ident: e_1_2_2_54_1
– start-page: 2770
  year: 2015
  ident: e_1_2_2_6_1
  article-title: Probabilistic Inference in Hybrid Domains by Weighted Model Integration
  publication-title: Proc. of IJCAI.
– ident: e_1_2_2_48_1
  doi: 10.1145/1592434.1592438
– volume-title: Proc. of NIPS 22 ( 2009 ), 1249-1257
  year: 2009
  ident: e_1_2_2_61_1
– volume-title: International Conference on Machine Learning ( 2020 ).
  year: 2020
  ident: e_1_2_2_86_1
– ident: e_1_2_2_17_1
  doi: 10.1016/j.artint.2007.11.002
– ident: e_1_2_2_70_1
  doi: 10.7551/mitpress/7432.003.0016
– ident: e_1_2_2_20_1
  doi: 10.1145/2491411.2491423
– ident: e_1_2_2_29_1
– volume-title: Proceedings of the Twelfth international conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 115-123
  year: 1996
  ident: e_1_2_2_12_1
– ident: e_1_2_2_18_1
  doi: 10.1016/j.ijar.2005.10.001
– ident: e_1_2_2_2_1
  doi: 10.1145/3133904
– ident: e_1_2_2_13_1
  doi: 10.1109/TC.1986.1676819
– start-page: 153
  year: 2013
  ident: e_1_2_2_15_1
  article-title: Eficiently sampling probabilistic programs via program analysis
  publication-title: Artificial Intelligence and Statistics.
– ident: e_1_2_2_32_1
  doi: 10.1109/ICSE.2013.6606608
– ident: e_1_2_2_26_1
  doi: 10.1613/jair.989
– ident: e_1_2_2_28_1
  doi: 10.1007/978-3-319-63390-9_31
– ident: e_1_2_2_5_1
  doi: 10.1007/978-3-642-93437-7_28
– ident: e_1_2_2_30_1
  doi: 10.1609/aaai.v33i01.33017825
– ident: e_1_2_2_46_1
  doi: 10.4230/LIPIcs.FSTTCS.2015.475
– ident: e_1_2_2_31_1
  doi: 10.1017/S1471068414000076
– start-page: 1520
  year: 2013
  ident: e_1_2_2_59_1
  article-title: Approximate bayesian image interpretation using generative probabilistic graphics programs
  publication-title: Advances in Neural Information Processing Systems.
– volume-title: Ph. D. dissertation, Inst. Biocybern. Biomed. Eng.
  ident: e_1_2_2_67_1
– ident: e_1_2_2_1_1
  doi: 10.1016/0169-2070(95)00664-8
– ident: e_1_2_2_52_1
  doi: 10.1201/b10391
– volume-title: Guy Van den Broeck, and Todd Millstein
  year: 2020
  ident: e_1_2_2_44_1
– volume-title: IJCAI ProceedingsInternational Joint Conference on Artificial Intelligence. 819
  year: 2011
  ident: e_1_2_2_25_1
– volume-title: Automatic Reparameterisation of Probabilistic Programs. International Conference on Machine Learning (ICML) ( 2020 ).
  year: 2020
  ident: e_1_2_2_40_1
– ident: e_1_2_2_68_1
  doi: 10.1016/B978-0-08-051489-5.50008-4
– ident: e_1_2_2_69_1
– ident: e_1_2_2_63_1
– ident: e_1_2_2_11_1
  doi: 10.1145/2654822.2541958
– ident: e_1_2_2_66_1
– ident: e_1_2_2_34_1
  doi: 10.1145/3296979.3192400
– ident: e_1_2_2_39_1
– volume-title: The computational complexity of probabilistic networks
  ident: e_1_2_2_57_1
– ident: e_1_2_2_45_1
  doi: 10.1007/978-3-662-49498-1_14
– ident: e_1_2_2_33_1
  doi: 10.1145/155090.155113
– volume-title: Structured Factored Inference for Probabilistic Programming. In International Conference on Artificial Intelligence and Statistics. 1224-1232
  year: 2018
  ident: e_1_2_2_72_1
– ident: e_1_2_2_37_1
  doi: 10.1016/j.artint.2010.10.009
– ident: e_1_2_2_74_1
– ident: e_1_2_2_10_1
  doi: 10.1007/978-3-642-19718-5_5
– ident: e_1_2_2_62_1
  doi: 10.1007/978-3-642-58940-9
– ident: e_1_2_2_73_1
  doi: 10.1017/S147106841100010X
– ident: e_1_2_2_51_1
– volume: 20
  year: 2019
  ident: e_1_2_2_9_1
  article-title: Pyro: Deep universal probabilistic programming
  publication-title: The Journal of Machine Learning Research
– start-page: 2476
  year: 2014
  ident: e_1_2_2_65_1
  article-title: R2
  publication-title: An Eficient MCMC Sampler for Probabilistic Programs. In AAAI.
– ident: e_1_2_2_56_1
  doi: 10.1007/978-3-642-22110-1_47
– ident: e_1_2_2_82_1
  doi: 10.1145/3296979.3192408
– volume-title: Hamiltonian Monte Carlo for Probabilistic Programs with Discontinuities. arXiv preprint arXiv
  year: 1804
  ident: e_1_2_2_41_1
– volume: 5
  start-page: 475
  year: 2005
  ident: e_1_2_2_75_1
  article-title: Performing Bayesian inference by weighted model counting
  publication-title: AAAI
– ident: e_1_2_2_81_1
  doi: 10.1016/j.ijar.2016.06.009
– ident: e_1_2_2_22_1
  doi: 10.1007/978-3-642-28869-2_9
– volume: 7
  start-page: 2462
  volume-title: Proceedings of IJCAI
  year: 2007
  ident: e_1_2_2_27_1
– ident: e_1_2_2_77_1
  doi: 10.1111/biom.12369
– volume-title: Stan: A probabilistic programming language. Journal of Statistical Software ( 2016 ).
  year: 2016
  ident: e_1_2_2_14_1
– volume-title: Figaro: An object-oriented probabilistic programming language. Charles River Analytics Technical Report 137 ( 2009 ).
  year: 2009
  ident: e_1_2_2_71_1
– volume-title: Handbook of Satisfiability, Armin Biere, Marijn J
  ident: e_1_2_2_7_1
– start-page: 1306
  year: 2005
  ident: e_1_2_2_16_1
  article-title: Compiling Bayesian networks with local structure
  publication-title: IJCAI.
– ident: e_1_2_2_4_1
  doi: 10.1023/A:1008699807402
– ident: e_1_2_2_24_1
  doi: 10.1017/CBO9780511811357
– volume-title: Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence (UAI).
  ident: e_1_2_2_38_1
– ident: e_1_2_2_79_1
  doi: 10.1561/1900000052
– ident: e_1_2_2_60_1
  doi: 10.1145/3192366.3192409
– ident: e_1_2_2_35_1
  doi: 10.1007/978-3-319-41528-4_4
– ident: e_1_2_2_58_1
  doi: 10.1613/jair.505
– start-page: 1024
  year: 2014
  ident: e_1_2_2_84_1
  article-title: A new approach to probabilistic programming inference
  publication-title: Artificial Intelligence and Statistics.
– volume-title: Proceedings of the 35th International Conference on Machine Learning (ICML).
  year: 2018
  ident: e_1_2_2_43_1
– ident: e_1_2_2_78_1
– ident: e_1_2_2_64_1
  doi: 10.1007/978-3-319-29604-3_5
– ident: e_1_2_2_83_1
– ident: e_1_2_2_76_1
  doi: 10.1145/2499370.2462179
– ident: e_1_2_2_8_1
  doi: 10.1023/A:1007421730016
– ident: e_1_2_2_53_1
  doi: 10.1109/SFCS.1979.38
– volume-title: Peled
  year: 1999
  ident: e_1_2_2_21_1
– volume: 18
  year: 2017
  ident: e_1_2_2_55_1
  article-title: Automatic diferentiation variational inference
  publication-title: The Journal of Machine Learning Research
– ident: e_1_2_2_23_1
  doi: 10.1145/3296979.3192399
– volume-title: Paul C Van Oorschot, and Scott A Vanstone
  year: 1996
  ident: e_1_2_2_50_1
– ident: e_1_2_2_36_1
  doi: 10.1145/2338965.2336773
– ident: e_1_2_2_49_1
  doi: 10.1023/A:1007665907178
– volume: 15
  year: 2014
  ident: e_1_2_2_42_1
  article-title: The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_2_3_1
  doi: 10.1016/0924-980x(95)00252-g
– ident: e_1_2_2_80_1
  doi: 10.1007/978-3-030-53291-8_15
SSID ssj0001934839
Score 2.4780476
Snippet Probabilistic programming languages (PPLs) are an expressive means of representing and reasoning about probabilistic models. The computational challenge of...
SourceID crossref
acm
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Mathematics of computing
Probabilistic inference problems
Probabilistic representations
Probability and statistics
SubjectTermsDisplay Mathematics of computing -- Probability and statistics -- Probabilistic inference problems
Mathematics of computing -- Probability and statistics -- Probabilistic representations
Title Scaling exact inference for discrete probabilistic programs
URI https://dl.acm.org/doi/10.1145/3428208
Volume 4
WOSCitedRecordID wos000685203900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2475-1421
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001934839
  issn: 2475-1421
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFLbK4MAFxgZiMJAPiFs017HjRJyqibFDt1VamXarYseRKmXp1HZTxYHfznuxnRq2Axy4RFXy5Kj-rM_vOd97j5BPSugKIg2TiFzbBD3iJDc1HuRnUjOdCVZ2dWbH6vw8v74uJoPBOOTC3DeqbfPNprj9r1DDPQAbU2f_Ae5-ULgBvwF0uALscP0r4C9h1jH-txtMf5yHhL5OT4g5uEtwk1GWpbvaulimOYi0VrGnOul3tk7sMTo-w-8K3vIGXxCOOnuv_HTRrH84GnPN0sKDqxIlty0spIV19Pvtbqs-njfNKvTcnC6qKj6IgKgTxXBptHS8uL0jLy4A9aFw2c-BaUW0oC4uJpfjUUSdw2gPdhvDQ3YXWAgjhYiJs3y7gfWyQv_kCXnKlSyQ485-RiduRSrAHXSZ0zjWkbdHx8TcRI5J5GFMd8kLHxrQkYP0FRnYdo-8DG03qGfhffLFI0w7hGmPMAWEaUCY_oYwDQi_Jt9Pvk6PTxPfAyMpuVLrxKJsiRtRWmlNZjjXrMo4KwtuyxKiowL-Zy3rrObCAltXklmbKpUZo1JVaJO-ITvtorVvCa21qY0aaqNZLaxUGlx_Zoxhpa2lKuQB2YNpmN26KiczPzkH5HOYlpnxZeOxe0kzcyntcmtIe8Mwxh8m7x59w3vyfLucDsnOenlnP5Bn5n49Xy0_dhj-AhiLWqI
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scaling+exact+inference+for+discrete+probabilistic+programs&rft.jtitle=Proceedings+of+ACM+on+programming+languages&rft.au=Holtzen%2C+Steven&rft.au=Van+den+Broeck%2C+Guy&rft.au=Millstein%2C+Todd&rft.date=2020-11-13&rft.pub=ACM&rft.eissn=2475-1421&rft.volume=4&rft.issue=OOPSLA&rft.spage=1&rft.epage=31&rft_id=info:doi/10.1145%2F3428208&rft.externalDocID=3428208
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1421&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1421&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1421&client=summon