PolyJuice: Detecting Mis-compilation Bugs in Tensor Compilers with Equality Saturation Based Rewriting

Tensor compilers are essential for deploying deep learning applications across various hardware platforms. While powerful, they are inherently complex and present significant challenges in ensuring correctness. This paper introduces PolyJuice, an automatic detection tool for identifying mis-compilat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of ACM on programming languages Jg. 8; H. OOPSLA2; S. 1309 - 1335
Hauptverfasser: Zhou, Chijin, Qian, Bingzhou, Go, Gwihwan, Zhang, Quan, Li, Shanshan, Jiang, Yu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY, USA ACM 08.10.2024
Schlagworte:
ISSN:2475-1421, 2475-1421
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Tensor compilers are essential for deploying deep learning applications across various hardware platforms. While powerful, they are inherently complex and present significant challenges in ensuring correctness. This paper introduces PolyJuice, an automatic detection tool for identifying mis-compilation bugs in tensor compilers. Its basic idea is to construct semantically-equivalent computation graphs to validate the correctness of tensor compilers. The main challenge is to construct equivalent graphs capable of efficiently exploring the diverse optimization logic during compilation. We approach it from two dimensions. First, we propose arithmetic and structural equivalent rewrite rules to modify the dataflow of a tensor program. Second, we design an efficient equality saturation based rewriting framework to identify the most simplified and the most complex equivalent computation graphs for an input graph. After that, the outcome computation graphs have different dataflow and will likely experience different optimization processes during compilation. We applied it to five well-tested industrial tensor compilers, namely PyTorch Inductor, OnnxRuntime, TVM, TensorRT, and XLA, as well as two well-maintained academic tensor compilers, EinNet and Hidet. In total, PolyJuice detected 84 non-crash mis-compilation bugs, out of which 49 were confirmed with 20 fixed.
AbstractList Tensor compilers are essential for deploying deep learning applications across various hardware platforms. While powerful, they are inherently complex and present significant challenges in ensuring correctness. This paper introduces PolyJuice, an automatic detection tool for identifying mis-compilation bugs in tensor compilers. Its basic idea is to construct semantically-equivalent computation graphs to validate the correctness of tensor compilers. The main challenge is to construct equivalent graphs capable of efficiently exploring the diverse optimization logic during compilation. We approach it from two dimensions. First, we propose arithmetic and structural equivalent rewrite rules to modify the dataflow of a tensor program. Second, we design an efficient equality saturation based rewriting framework to identify the most simplified and the most complex equivalent computation graphs for an input graph. After that, the outcome computation graphs have different dataflow and will likely experience different optimization processes during compilation. We applied it to five well-tested industrial tensor compilers, namely PyTorch Inductor, OnnxRuntime, TVM, TensorRT, and XLA, as well as two well-maintained academic tensor compilers, EinNet and Hidet. In total, PolyJuice detected 84 non-crash mis-compilation bugs, out of which 49 were confirmed with 20 fixed.
ArticleNumber 317
Author Go, Gwihwan
Qian, Bingzhou
Zhou, Chijin
Zhang, Quan
Li, Shanshan
Jiang, Yu
Author_xml – sequence: 1
  givenname: Chijin
  orcidid: 0000-0002-6446-247X
  surname: Zhou
  fullname: Zhou, Chijin
  email: tlock.chijin@gmail.com
  organization: Tsinghua University, Beijing, China
– sequence: 2
  givenname: Bingzhou
  orcidid: 0009-0004-6522-4133
  surname: Qian
  fullname: Qian, Bingzhou
  email: azykamail@gmail.com
  organization: National University of Defense Technology, Changsha, China
– sequence: 3
  givenname: Gwihwan
  orcidid: 0009-0001-0461-9674
  surname: Go
  fullname: Go, Gwihwan
  email: iejw1914@gmail.com
  organization: Tsinghua University, Beijing, China
– sequence: 4
  givenname: Quan
  orcidid: 0000-0001-7778-4243
  surname: Zhang
  fullname: Zhang, Quan
  email: zhangq20@mails.tsinghua.edu.cn
  organization: Tsinghua University, Beijing, China
– sequence: 5
  givenname: Shanshan
  orcidid: 0000-0003-0798-974X
  surname: Li
  fullname: Li, Shanshan
  email: shanshanli@nudt.edu.cn
  organization: National University of Defense Technology, Changsha, China
– sequence: 6
  givenname: Yu
  orcidid: 0000-0003-0955-503X
  surname: Jiang
  fullname: Jiang, Yu
  email: jiangyu198964@126.com
  organization: Tsinghua University, Beijing, China
BookMark eNptkEtLw0AURgepYK3FvavZuYrOK5nGnbb1RUXRug4386gjaVJnJpT-e-1DEXF1L3znHi7fIerUTW0QOqbkjFKRnvNskMtU7qEuEzJNqGC082s_QP0Q3gkhNOdiwPMusk9NtbpvnTIXeGSiUdHVM_zgQqKa-cJVEF1T46t2FrCr8dTUofF4uImMD3jp4hsef7RQubjCLxBbv7uAYDR-Nkvv1sYjtG-hCqa_mz30ej2eDm-TyePN3fBykgCTMiZaUiatpiljmjBBudCl4szkoHJblqVlXJeQKTtQVgiwqQZmCNeZsYpklPIeOt16lW9C8MYWC-_m4FcFJcW6oWLX0BeZ_CGVi5vfowdX_cOfbHlQ8x_pd_gJr51zPg
CitedBy_id crossref_primary_10_1145_3716497
Cites_doi 10.1145/3597503.3623343
10.1145/3434304
10.1145/3548606.3560624
10.1145/3324884.3416571
10.1145/3324884.3416572
10.1145/2491956.2462176
10.1145/3627703.3629562
10.1145/3600006.3613139
10.1145/3600006.3613140
10.1109/ICSE48619.2023.00024
10.1145/2737924.2737959
10.1145/3341301.3359662
10.1145/3510003.3510165
10.1145/1480881.1480915
10.5281/zenodo.12671619
10.1145/3510003.3510092
10.1109/MICRO50266.2020.00044
10.1145/3445814.3446707
10.1145/3540250.3549123
10.1145/3453483.3454038
10.1145/3632900
10.1145/3586027
10.1145/3540250.3549107
10.1109/TPDS.2020.3030548
10.1145/2384616.2384628
10.1145/3503222.3507764
10.1145/3368089.3409761
10.1145/3551349.3560431
10.1145/3597503.3639112
10.1145/3527317
10.1145/3591239
10.1145/3468264.3468591
10.14722/ndss.2019.23263
10.1145/3341301.3359630
10.1145/3519939.3523428
10.1145/1993498.1993532
10.1145/3489048.3522655
10.1145/3622819
10.1145/2594291.2594334
ContentType Journal Article
Copyright Owner/Author
Copyright_xml – notice: Owner/Author
DBID AAYXX
CITATION
DOI 10.1145/3689757
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2475-1421
EndPage 1335
ExternalDocumentID 10_1145_3689757
3689757
GroupedDBID AAKMM
AAYFX
ACM
ADPZR
AIKLT
ALMA_UNASSIGNED_HOLDINGS
GUFHI
LHSKQ
M~E
OK1
ROL
AAYXX
AEFXT
AEJOY
AKRVB
CITATION
ID FETCH-LOGICAL-a277t-d7127fd1522d024134dbc32e9ac9fbbbf23dba6cf8cf44af5da2e03d6efc06113
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001356867600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2475-1421
IngestDate Sat Nov 29 07:48:01 EST 2025
Tue Nov 18 22:23:45 EST 2025
Fri Feb 21 01:26:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue OOPSLA2
Keywords Fuzzing
Equality Saturation
Tensor Compiler Testing
ML System
Language English
License This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International 4.0 License.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a277t-d7127fd1522d024134dbc32e9ac9fbbbf23dba6cf8cf44af5da2e03d6efc06113
ORCID 0000-0002-6446-247X
0009-0004-6522-4133
0000-0003-0798-974X
0000-0003-0955-503X
0009-0001-0461-9674
0000-0001-7778-4243
OpenAccessLink https://dl.acm.org/doi/10.1145/3689757
PageCount 27
ParticipantIDs crossref_primary_10_1145_3689757
crossref_citationtrail_10_1145_3689757
acm_primary_3689757
PublicationCentury 2000
PublicationDate 2024-10-08
PublicationDateYYYYMMDD 2024-10-08
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-08
  day: 08
PublicationDecade 2020
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationTitle Proceedings of ACM on programming languages
PublicationTitleAbbrev ACM PACMPL
PublicationYear 2024
Publisher ACM
Publisher_xml – name: ACM
References Theodoros Theodoridis, Manuel Rigger, and Zhendong Su. 2022. Finding missed optimizations through the lens of dead code elimination. In 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2022. ACM.
Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E. Gonzalez, and Ion Stoica. 2022. Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning. In 16th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2022.
Haoyang Ma, Qingchao Shen, Yongqiang Tian, Junjie Chen, and Shing-Chi Cheung. 2023. Fuzzing Deep Learning Compilers with HirGen. In 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2023.
Nvidia. 2023. NVIDIA TensorRT. https://developer.nvidia.com/tensorrt (visited on September 1, 2023)
microsoft. 2023. ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator. https://github.com/microsoft/onnxruntime (visited on September 1, 2023)
open std. 2023. ISO/IEC 9899:TC3. https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf (visited on September 1, 2023)
Ningxin Zheng, Huiqiang Jiang, Quanlu Zhang, Zhenhua Han, Lingxiao Ma, Yuqing Yang, Fan Yang, Chengruidong Zhang, Lili Qiu, Mao Yang, and Lidong Zhou. 2023. PIT: Optimization of Dynamic Sparse Deep Learning Models via Permutation Invariant Transformation. In 29th Symposium on Operating Systems Principles, SOSP 2023.
Chijin Zhou, Quan Zhang, Lihua Guo, Mingzhe Wang, Yu Jiang, Qing Liao, Zhiyong Wu, Shanshan Li, and Bin Gu. 2023. Towards Better Semantics Exploration for Browser Fuzzing. Proc. ACM Program. Lang., 7, OOPSLA2 (2023), 604–631.
2024. PolyJuice: Detecting Mis-Compilation Bugs in Tensor Compilers with Equality Saturation Based Rewriting. Zenodo. https://doi.org/10.5281/zenodo.12671619 10.5281/zenodo.12671619
Cong Li, Yanyan Jiang, Chang Xu, and Zhendong Su. 2023. Validating JIT Compilers via Compilation Space Exploration. In 29th Symposium on Operating Systems Principles, SOSP 2023.
Mingzhe Wang, Jie Liang, Chijin Zhou, Zhiyong Wu, Xinyi Xu, and Yu Jiang. 2022. Odin: on-demand instrumentation with on-the-fly recompilation. In 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation, PLDI 2022.
Liyan Zheng, Haojie Wang, Jidong Zhai, Muyan Hu, Zixuan Ma, Tuowei Wang, Shuhong Huang, Xupeng Miao, Shizhi Tang, Kezhao Huang, and Zhihao Jia. 2023. EINNET: Optimizing Tensor Programs with Derivation-Based Transformations. In 17th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2023.
Wookeun Jung, Thanh Tuan Dao, and Jaejin Lee. 2021. DeepCuts: a deep learning optimization framework for versatile GPU workloads. In 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, PLDI 2021.
Chen Zhang, Lingxiao Ma, Jilong Xue, Yining Shi, Ziming Miao, Fan Yang, Jidong Zhai, Zhi Yang, and Mao Yang. 2023. Cocktailer: Analyzing and Optimizing Dynamic Control Flow in Deep Learning. In 17th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2023.
Manuel Rigger and Zhendong Su. 2020. Testing Database Engines via Pivoted Query Synthesis. In 14th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2020.
Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma, Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong, Yuanyong Chen, and Zhihao Jia. 2021. PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections. In 15th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2021.
Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock. 2015. Automatically improving accuracy for floating point expressions. In 36th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2015.
Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian Sampson. 2021. Vectorization for digital signal processors via equality saturation. In 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2021.
Mingzhe Wang, Zhiyong Wu, Xinyi Xu, Jie Liang, Chijin Zhou, Huafeng Zhang, and Yu Jiang. 2021. Industry Practice of Coverage-Guided Enterprise-Level DBMS Fuzzing. In 43rd IEEE/ACM International Conference on Software Engineering: Software Engineering in Practice, ICSE (SEIP) 2021.
Qianyu Guo, Xiaofei Xie, Yi Li, Xiaoyu Zhang, Yang Liu, Xiaohong Li, and Chao Shen. 2020. Audee: Automated Testing for Deep Learning Frameworks. In 35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020.
Mingzhe Wang, Jie Liang, Chijin Zhou, Zhiyong Wu, Jingzhou Fu, Zhuo Su, Qing Liao, Bin Gu, Bodong Wu, and Yu Jiang. 2024. Data Coverage for Guided Fuzzing. In 33rd USENIX Security Symposium, USENIX Security 2024.
Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, and Yu Jiang. 2020. Zeror: Speed Up Fuzzing with Coverage-sensitive Tracing and Scheduling. In 35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020.
Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality saturation: a new approach to optimization. In 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009.
Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim Blazytko, and Thorsten Holz. 2022. JIT-Picking: Differential Fuzzing of JavaScript Engines. In 2022 ACM SIGSAC Conference on Computer and Communications Security, CCS 2022.
Sameer Kulkarni and John Cavazos. 2012. Mitigating the compiler optimization phase-ordering problem using machine learning. In 27th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2012.
The IEEE and The Open Group. 2023. diff - compare two files. https://pubs.opengroup.org/onlinepubs/009604499/utilities/diff.html (visited on September 1, 2023)
Chijin Zhou, Quan Zhang, Mingzhe Wang, Lihua Guo, Jie Liang, Zhe Liu, Mathias Payer, and Yu Jiang. 2022. Minerva: browser API fuzzing with dynamic mod-ref analysis. In 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022.
Jiawei Liu, Yuxiang Wei, Sen Yang, Yinlin Deng, and Lingming Zhang. 2022. Coverage-guided tensor compiler fuzzing with joint IR-pass mutation. Proc. ACM Program. Lang., 6, OOPSLA1 (2022), 1–26.
Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011.
James K. Reed, Zachary DeVito, Horace He, Ansley Ussery, and Jason Ansel. 2022. torch.fx: Practical Program Capture and Transformation for Deep Learning in Python. In Proceedings of Machine Learning and Systems 2022, MLSys 2022.
Junru Shao, Xiyou Zhou, Siyuan Feng, Bohan Hou, Ruihang Lai, Hongyi Jin, Wuwei Lin, Masahiro Masuda, Cody Hao Yu, and Tianqi Chen. 2022. Tensor Program Optimization with Probabilistic Programs. In NeurIPS.
Weisi Luo, Dong Chai, Xiaoyue Run, Jiang Wang, Chunrong Fang, and Zhenyu Chen. 2021. Graph-based Fuzz Testing for Deep Learning Inference Engines. In 43rd IEEE/ACM International Conference on Software Engineering, ICSE 2021.
tvm. 2023. PR: Fix a bug of iter map floormod(x,2) simplify. https://github.com/apache/tvm/pull/14571 (visited on September 1, 2023)
Junming Cao, Bihuan Chen, Chao Sun, Longjie Hu, Shuaihong Wu, and Xin Peng. 2022. Understanding performance problems in deep learning systems. In 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022.
Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo Kim. 2019. Finding semantic bugs in file systems with an extensible fuzzing framework. In 27th ACM Symposium on Operating Systems Principles, SOSP 2019.
Yaoyao Ding, Cody Hao Yu, Bojian Zheng, Yizhi Liu, Yida Wang, and Gennady Pekhimenko. 2023. Hidet: Task-Mapping Programming Paradigm for Deep Learning Tensor Programs. In 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2, ASPLOS 2023.
Shaohua Li and Zhendong Su. 2023. Accelerating Fuzzing through Prefix-Guided Execution. Proc. ACM Program. Lang., 7, OOPSLA1 (2023), 1–27.
Hao Sun, Yiru Xu, Jianzhong Liu, Yuheng Shen, Nan Guan, and Yu Jiang. 2024. Finding Correctness Bugs in eBPF Verifier with Structured and Sanitized Program. In 19th European Conference on Computer Systems, EuroSys 2024.
Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and Lingming Zhang. 2023. NNSmith: Generating Diverse and Valid Test Cases for Deep Learning Compilers. In 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2, ASPLOS 2023.
Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken. 2019. TASO: optimizing deep learning computation with automatic generation of graph substitutions. In 27th ACM Symposium on Operating Systems Principles, SOSP 2019.
Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong Yang, Zhongzhi Luan, Lin Gan, Guangwen Yang, and Depei Qian. 2021. The Deep Learning Compiler: A Comprehensive Survey. IEEE Trans. Parallel Distributed Syst., 32, 3 (2021), 708–727.
Jingzhou Fu, Jie Liang, Zhiyong Wu, Mingzhe Wang, and Yu Jiang. 2022. Griffin : Grammar-Free DBMS Fuzzing. In 37th IEEE/ACM International Conference on Automated Software Engineering, ASE 2022.
Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman P. Amarasinghe. 2013. Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines. In 34th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2013.
Paul E Black. 1999. Algorithms and theory of
Black Paul E (e_1_2_1_3_1)
Zhu Hongyu (e_1_2_1_76_1) 2022
Reuther Albert (e_1_2_1_42_1) 2020
Wang Mingzhe (e_1_2_1_58_1) 2021
Zheng Lianmin (e_1_2_1_69_1) 2022
e_1_2_1_60_1
Wang Mingzhe (e_1_2_1_56_1) 2024
The IEEE and The Open Group (e_1_2_1_13_1) 2023
Zhou Chijin (e_1_2_1_74_1) 2025
e_1_2_1_20_1
e_1_2_1_66_1
(e_1_2_1_38_1) 2023
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_62_1
e_1_2_1_22_1
Reed James K. (e_1_2_1_41_1) 2022
Shao Junru (e_1_2_1_44_1) 2022
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_26_1
e_1_2_1_47_1
Liu Jiawei (e_1_2_1_27_1) 2023; 2
(e_1_2_1_48_1) 2023
Unger Colin (e_1_2_1_51_1) 2022
e_1_2_1_71_1
Rigger Manuel (e_1_2_1_43_1) 2020
Wang Haojie (e_1_2_1_53_1) 2021
Luo Weisi (e_1_2_1_29_1) 2021
IEC (e_1_2_1_34_1) 2023
Pal Anjali (e_1_2_1_35_1) 2023
e_1_2_1_54_1
e_1_2_1_8_1
e_1_2_1_6_1
e_1_2_1_12_1
e_1_2_1_73_1
e_1_2_1_4_1
Ding Yaoyao (e_1_2_1_7_1) 2023; 2
e_1_2_1_10_1
e_1_2_1_52_1
Zheng Liyan (e_1_2_1_70_1) 2023
e_1_2_1_75_1
e_1_2_1_2_1
e_1_2_1_16_1
e_1_2_1_14_1
e_1_2_1_37_1
Chen Tianqi (e_1_2_1_5_1) 2018
Jia Zhihao (e_1_2_1_15_1) 2019
Wang Mingzhe (e_1_2_1_55_1) 2021
Zheng Lianmin (e_1_2_1_68_1) 2020
Mohan Jayashree (e_1_2_1_32_1) 2018
e_1_2_1_65_1
e_1_2_1_40_1
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_61_1
Zhang Chen (e_1_2_1_64_1) 2023
e_1_2_1_21_1
(e_1_2_1_39_1) 2023
NVIDIA (e_1_2_1_33_1) 2023
Zhao Jie (e_1_2_1_67_1) 2022
e_1_2_1_25_1
Ma Haoyang (e_1_2_1_30_1) 2023
Kjolstad Fredrik (e_1_2_1_18_1) 2017
e_1_2_1_57_1
e_1_2_1_72_1
e_1_2_1_1_1
e_1_2_1_11_1
(e_1_2_1_50_1) 2023
e_1_2_1_17_1
(e_1_2_1_31_1) 2023
e_1_2_1_36_1
Yang Yichen (e_1_2_1_63_1) 2021
e_1_2_1_59_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – reference: Yaoyao Ding, Cody Hao Yu, Bojian Zheng, Yizhi Liu, Yida Wang, and Gennady Pekhimenko. 2023. Hidet: Task-Mapping Programming Paradigm for Deep Learning Tensor Programs. In 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2, ASPLOS 2023.
– reference: Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E. Gonzalez, and Ion Stoica. 2022. Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning. In 16th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2022.
– reference: Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos Efrain Quintero Narvaez, Vinay Ramakrishnaiah, Nirmal Prajapati, Patrick S. McCormick, Jamaludin Mohd-Yusof, Xi Luo, Dheevatsa Mudigere, Jongsoo Park, Misha Smelyanskiy, and Alex Aiken. 2022. Unity: Accelerating DNN Training Through Joint Optimization of Algebraic Transformations and Parallelization. In 16th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2022.
– reference: Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma, Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong, Yuanyong Chen, and Zhihao Jia. 2021. PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections. In 15th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2021.
– reference: Hao Sun, Yiru Xu, Jianzhong Liu, Yuheng Shen, Nan Guan, and Yu Jiang. 2024. Finding Correctness Bugs in eBPF Verifier with Structured and Sanitized Program. In 19th European Conference on Computer Systems, EuroSys 2024.
– reference: Ningxin Zheng, Huiqiang Jiang, Quanlu Zhang, Zhenhua Han, Lingxiao Ma, Yuqing Yang, Fan Yang, Chengruidong Zhang, Lili Qiu, Mao Yang, and Lidong Zhou. 2023. PIT: Optimization of Dynamic Sparse Deep Learning Models via Permutation Invariant Transformation. In 29th Symposium on Operating Systems Principles, SOSP 2023.
– reference: Jiawei Liu, Yuxiang Wei, Sen Yang, Yinlin Deng, and Lingming Zhang. 2022. Coverage-guided tensor compiler fuzzing with joint IR-pass mutation. Proc. ACM Program. Lang., 6, OOPSLA1 (2022), 1–26.
– reference: Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian Sampson. 2021. Vectorization for digital signal processors via equality saturation. In 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2021.
– reference: Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock. 2015. Automatically improving accuracy for floating point expressions. In 36th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2015.
– reference: Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, and Yu Jiang. 2020. Zeror: Speed Up Fuzzing with Coverage-sensitive Tracing and Scheduling. In 35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020.
– reference: Manuel Rigger and Zhendong Su. 2020. Testing Database Engines via Pivoted Query Synthesis. In 14th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2020.
– reference: Yihong Zhang, Yisu Remy Wang, Oliver Flatt, David Cao, Philip Zucker, Eli Rosenthal, Zachary Tatlock, and Max Willsey. 2023. Better Together: Unifying Datalog and Equality Saturation. Proc. ACM Program. Lang., 7, PLDI (2023), 468–492.
– reference: Chijin Zhou, Quan Zhang, Mingzhe Wang, Lihua Guo, Jie Liang, Zhe Liu, Mathias Payer, and Yu Jiang. 2022. Minerva: browser API fuzzing with dynamic mod-ref analysis. In 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022.
– reference: Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman P. Amarasinghe. 2013. Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines. In 34th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2013.
– reference: Chijin Zhou, Quan Zhang, Lihua Guo, Mingzhe Wang, Yu Jiang, Qing Liao, Zhiyong Wu, Shanshan Li, and Bin Gu. 2023. Towards Better Semantics Exploration for Browser Fuzzing. Proc. ACM Program. Lang., 7, OOPSLA2 (2023), 604–631.
– reference: Hao Guan, Ying Xiao, Jiaying Li, Yepang Liu, and Guangdong Bai. 2023. A Comprehensive Study of Real-World Bugs in Machine Learning Model Optimization. In 45th IEEE/ACM International Conference on Software Engineering, ICSE 2023.
– reference: Wookeun Jung, Thanh Tuan Dao, and Jaejin Lee. 2021. DeepCuts: a deep learning optimization framework for versatile GPU workloads. In 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, PLDI 2021.
– reference: Jie Liang, Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, Chengnian Sun, and Yu Jiang. 2024. Mozi: Discovering DBMS Bugs via Configuration-Based Equivalent Transformation. In 46th IEEE/ACM International Conference on Software Engineering, ICSE 2024.
– reference: Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and Ion Stoica. 2020. Ansor: Generating High-Performance Tensor Programs for Deep Learning. In 14th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2020. USENIX Association.
– reference: Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equivalence modulo inputs. In 35th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2014.
– reference: Cong Li, Yanyan Jiang, Chang Xu, and Zhendong Su. 2023. Validating JIT Compilers via Compilation Space Exploration. In 29th Symposium on Operating Systems Principles, SOSP 2023.
– reference: Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011.
– reference: Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken. 2019. TASO: optimizing deep learning computation with automatic generation of graph substitutions. In 27th ACM Symposium on Operating Systems Principles, SOSP 2019.
– reference: Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. 2021. egg: Fast and extensible equality saturation. Proc. ACM Program. Lang., 5, POPL (2021), 1–29.
– reference: Douglas M. Priest. 1992. On properties of floating point arithmetics: numerical stability and the cost of accurate computations. Ph. D. Dissertation. USA. UMI Order No. GAX93-30692
– reference: Chen Zhang, Lingxiao Ma, Jilong Xue, Yining Shi, Ziming Miao, Fan Yang, Jidong Zhai, Zhi Yang, and Mao Yang. 2023. Cocktailer: Analyzing and Optimizing Dynamic Control Flow in Deep Learning. In 17th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2023.
– reference: Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju, and Vijay Chidambaram. 2018. Finding Crash-Consistency Bugs with Bounded Black-Box Crash Testing. In 13th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2018.
– reference: Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and Lingming Zhang. 2024. Large language models are edge-case generators: Crafting unusual programs for fuzzing deep learning libraries. In 46th IEEE/ACM International Conference on Software Engineering, ICSE 2024.
– reference: Qianyu Guo, Xiaofei Xie, Yi Li, Xiaoyu Zhang, Yang Liu, Xiaohong Li, and Chao Shen. 2020. Audee: Automated Testing for Deep Learning Frameworks. In 35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020.
– reference: Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and Lingming Zhang. 2023. NNSmith: Generating Diverse and Valid Test Cases for Deep Learning Compilers. In 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2, ASPLOS 2023.
– reference: microsoft. 2023. ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator. https://github.com/microsoft/onnxruntime (visited on September 1, 2023)
– reference: open std. 2023. ISO/IEC 9899:TC3. https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf (visited on September 1, 2023)
– reference: Tensorflow. 2023. https://www.tensorflow.org/xla. https://www.tensorflow.org/xla (visited on September 1, 2023)
– reference: Jie Zhao, Xiong Gao, Ruijie Xia, Zhaochuang Zhang, Deshi Chen, Lei Chen, Renwei Zhang, Zhen Geng, Bin Cheng, and Xuefeng Jin. 2022. Apollo: Automatic Partition-based Operator Fusion through Layer by Layer Optimization. In Proceedings of Machine Learning and Systems 2022, MLSys 2022.
– reference: Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang. 2020. Deep learning library testing via effective model generation. In 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2020.
– reference: Jie Zhao and Peng Di. 2020. Optimizing the Memory Hierarchy by Compositing Automatic Transformations on Computations and Data. In 53rd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2020.
– reference: Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo Kim. 2019. Finding semantic bugs in file systems with an extensible fuzzing framework. In 27th ACM Symposium on Operating Systems Principles, SOSP 2019.
– reference: Mingzhe Wang, Jie Liang, Chijin Zhou, Zhiyong Wu, Jingzhou Fu, Zhuo Su, Qing Liao, Bin Gu, Bodong Wu, and Yu Jiang. 2024. Data Coverage for Guided Fuzzing. In 33rd USENIX Security Symposium, USENIX Security 2024.
– reference: Mingzhe Wang, Jie Liang, Chijin Zhou, Zhiyong Wu, Xinyi Xu, and Yu Jiang. 2022. Odin: on-demand instrumentation with on-the-fly recompilation. In 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation, PLDI 2022.
– reference: tvm. 2023. PR: Fix a bug of iter map floormod(x,2) simplify. https://github.com/apache/tvm/pull/14571 (visited on September 1, 2023)
– reference: Thomas Koehler, Andrés Goens, Siddharth Bhat, Tobias Grosser, Phil Trinder, and Michel Steuwer. 2024. Guided Equality Saturation. Proc. ACM Program. Lang., 8, POPL (2024), 1727–1758.
– reference: Junru Shao, Xiyou Zhou, Siyuan Feng, Bohan Hou, Ruihang Lai, Hongyi Jin, Wuwei Lin, Masahiro Masuda, Cody Hao Yu, and Tianqi Chen. 2022. Tensor Program Optimization with Probabilistic Programs. In NeurIPS.
– reference: Hongyu Zhu, Ruofan Wu, Yijia Diao, Shanbin Ke, Haoyu Li, Chen Zhang, Jilong Xue, Lingxiao Ma, Yuqing Xia, Wei Cui, Fan Yang, Mao Yang, Lidong Zhou, Asaf Cidon, and Gennady Pekhimenko. 2022. ROLLER: Fast and Efficient Tensor Compilation for Deep Learning. In 16th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2022.
– reference: Paul E Black. 1999. Algorithms and theory of computation handbook, "Levenshtein distance". CRC press. https://www.nist.gov/dads/HTML/Levenshtein.html
– reference: Nvidia. 2023. NVIDIA TensorRT. https://developer.nvidia.com/tensorrt (visited on September 1, 2023)
– reference: HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. 2019. CodeAlchemist: Semantics-Aware Code Generation to Find Vulnerabilities in JavaScript Engines. In 26th Annual Network and Distributed System Security Symposium, NDSS 2019.
– reference: Dongwei Xiao, Zhibo Liu, Yuanyuan Yuan, Qi Pang, and Shuai Wang. 2022. Metamorphic Testing of Deep Learning Compilers. Proc. ACM Meas. Anal. Comput. Syst., 6, 1 (2022), 15:1–15:28.
– reference: Mingzhe Wang, Jie Liang, Chijin Zhou, Yu Jiang, Rui Wang, Chengnian Sun, and Jiaguang Sun. 2021. RIFF: Reduced Instruction Footprint for Coverage-Guided Fuzzing. In 2021 USENIX Annual Technical Conference, USENIX ATC 2021.
– reference: Yichen Yang, Phitchaya Mangpo Phothilimthana, Yisu Remy Wang, Max Willsey, Sudip Roy, and Jacques Pienaar. 2021. Equality Saturation for Tensor Graph Superoptimization. In Proceedings of Machine Learning and Systems 2021, MLSys 2021.
– reference: Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality saturation: a new approach to optimization. In 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009.
– reference: Haoyang Ma, Qingchao Shen, Yongqiang Tian, Junjie Chen, and Shing-Chi Cheung. 2023. Fuzzing Deep Learning Compilers with HirGen. In 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2023.
– reference: Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi, and Jeremy Kepner. 2020. Survey of Machine Learning Accelerators. In 2020 IEEE High Performance Extreme Computing Conference, HPEC 2020.
– reference: Theodoros Theodoridis, Manuel Rigger, and Zhendong Su. 2022. Finding missed optimizations through the lens of dead code elimination. In 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2022. ACM.
– reference: Shaohua Li and Zhendong Su. 2023. Accelerating Fuzzing through Prefix-Guided Execution. Proc. ACM Program. Lang., 7, OOPSLA1 (2023), 1–27.
– reference: The IEEE and The Open Group. 2023. diff - compare two files. https://pubs.opengroup.org/onlinepubs/009604499/utilities/diff.html (visited on September 1, 2023)
– reference: Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung, and Xiang Chen. 2021. A comprehensive study of deep learning compiler bugs. In 29th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2021.
– reference: Mingzhe Wang, Zhiyong Wu, Xinyi Xu, Jie Liang, Chijin Zhou, Huafeng Zhang, and Yu Jiang. 2021. Industry Practice of Coverage-Guided Enterprise-Level DBMS Fuzzing. In 43rd IEEE/ACM International Conference on Software Engineering: Software Engineering in Practice, ICSE (SEIP) 2021.
– reference: 2024. PolyJuice: Detecting Mis-Compilation Bugs in Tensor Compilers with Equality Saturation Based Rewriting. Zenodo. https://doi.org/10.5281/zenodo.12671619 10.5281/zenodo.12671619
– reference: Cong Li, Yanyan Jiang, Chang Xu, and Zhendong Su. 2023. Validating JIT Compilers via Compilation Space Exploration. In 29th Symposium on Operating Systems Principles, SOSP 2023, Koblenz, Germany, October 23-26, 2023.
– reference: Jingzhou Fu, Jie Liang, Zhiyong Wu, Mingzhe Wang, and Yu Jiang. 2022. Griffin : Grammar-Free DBMS Fuzzing. In 37th IEEE/ACM International Conference on Automated Software Engineering, ASE 2022.
– reference: Weisi Luo, Dong Chai, Xiaoyue Run, Jiang Wang, Chunrong Fang, and Zhenyu Chen. 2021. Graph-based Fuzz Testing for Deep Learning Inference Engines. In 43rd IEEE/ACM International Conference on Software Engineering, ICSE 2021.
– reference: Anjali Pal, Brett Saiki, Ryan Tjoa, Cynthia Richey, Amy Zhu, Oliver Flatt, Max Willsey, Zachary Tatlock, and Chandrakana Nandi. 2023. Equality Saturation Theory Exploration à la Carte. Proc. ACM Program. Lang., 7, OOPSLA2 (2023), 1034–1062.
– reference: Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong Yang, Zhongzhi Luan, Lin Gan, Guangwen Yang, and Depei Qian. 2021. The Deep Learning Compiler: A Comprehensive Survey. IEEE Trans. Parallel Distributed Syst., 32, 3 (2021), 708–727.
– reference: PyTorch. 2023. Glow - Compiler for Neural Network hardware accelerators. https://github.com/pytorch/glow (visited on September 1, 2023)
– reference: Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q. Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2018.
– reference: James K. Reed, Zachary DeVito, Horace He, Ansley Ussery, and Jason Ansel. 2022. torch.fx: Practical Program Capture and Transformation for Deep Learning in Python. In Proceedings of Machine Learning and Systems 2022, MLSys 2022.
– reference: Zhihao Jia, James Thomas, Todd Warszawski, Mingyu Gao, Matei Zaharia, and Alex Aiken. 2019. Optimizing DNN Computation with Relaxed Graph Substitutions. In Proceedings of Machine Learning and Systems 2019, MLSys 2019.
– reference: Jiannan Wang, Thibaud Lutellier, Shangshu Qian, Hung Viet Pham, and Lin Tan. 2022. EAGLE: Creating Equivalent Graphs to Test Deep Learning Libraries. In 44th IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022.
– reference: Jiazhen Gu, Xuchuan Luo, Yangfan Zhou, and Xin Wang. 2022. Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing. In 44th IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022.
– reference: PyTorch. 2023. Accelerated CPU Inference with PyTorch Inductor using torch.compile. https://pytorch.org/blog/accelerated-cpu-inference/ (visited on September 1, 2023)
– reference: Chijin Zhou, Quan Zhang, Bingzhou Qian, and Yu Jiang. 2025. Janus: Detecting Rendering Bugs in Web Browsers via Visual Delta Consistency. In 47th IEEE/ACM International Conference on Software Engineering, ICSE 2025.
– reference: Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman P. Amarasinghe. 2017. The tensor algebra compiler. Proc. ACM Program. Lang., 1, OOPSLA (2017), 77:1–77:29.
– reference: Junming Cao, Bihuan Chen, Chao Sun, Longjie Hu, Shuaihong Wu, and Xin Peng. 2022. Understanding performance problems in deep learning systems. In 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022.
– reference: Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim Blazytko, and Thorsten Holz. 2022. JIT-Picking: Differential Fuzzing of JavaScript Engines. In 2022 ACM SIGSAC Conference on Computer and Communications Security, CCS 2022.
– reference: Liyan Zheng, Haojie Wang, Jidong Zhai, Muyan Hu, Zixuan Ma, Tuowei Wang, Shuhong Huang, Xupeng Miao, Shizhi Tang, Kezhao Huang, and Zhihao Jia. 2023. EINNET: Optimizing Tensor Programs with Derivation-Based Transformations. In 17th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2023.
– reference: Sameer Kulkarni and John Cavazos. 2012. Mitigating the compiler optimization phase-ordering problem using machine learning. In 27th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2012.
– ident: e_1_2_1_6_1
  doi: 10.1145/3597503.3623343
– volume-title: ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator. https://github.com/microsoft/onnxruntime (visited on
  year: 2023
  ident: e_1_2_1_31_1
– ident: e_1_2_1_60_1
  doi: 10.1145/3434304
– volume-title: PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections. In 15th USENIX Symposium on Operating Systems Design and Implementation, OSDI
  year: 2021
  ident: e_1_2_1_53_1
– volume-title: Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning. In 16th USENIX Symposium on Operating Systems Design and Implementation, OSDI
  year: 2022
  ident: e_1_2_1_69_1
– volume-title: Proc. ACM Program. Lang., 7, OOPSLA2
  year: 2023
  ident: e_1_2_1_35_1
– volume-title: Data Coverage for Guided Fuzzing. In 33rd USENIX Security Symposium, USENIX Security
  year: 2024
  ident: e_1_2_1_56_1
– volume-title: diff - compare two files. https://pubs.opengroup.org/onlinepubs/009604499/utilities/diff.html (visited on
  year: 2023
  ident: e_1_2_1_13_1
– ident: e_1_2_1_2_1
  doi: 10.1145/3548606.3560624
– ident: e_1_2_1_11_1
  doi: 10.1145/3324884.3416571
– volume: 2
  volume-title: NNSmith: Generating Diverse and Valid Test Cases for Deep Learning Compilers. In 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems
  year: 2023
  ident: e_1_2_1_27_1
– volume-title: Proceedings of Machine Learning and Systems 2021
  year: 2021
  ident: e_1_2_1_63_1
– ident: e_1_2_1_72_1
  doi: 10.1145/3324884.3416572
– volume-title: Graph-based Fuzz Testing for Deep Learning Inference Engines. In 43rd IEEE/ACM International Conference on Software Engineering, ICSE
  year: 2021
  ident: e_1_2_1_29_1
– volume-title: Survey of Machine Learning Accelerators. In 2020 IEEE High Performance Extreme Computing Conference, HPEC
  year: 2020
  ident: e_1_2_1_42_1
– volume-title: PR: Fix a bug of iter map floormod(x,2) simplify. https://github.com/apache/tvm/pull/14571 (visited on
  year: 2023
  ident: e_1_2_1_50_1
– volume-title: Proceedings of Machine Learning and Systems 2019
  year: 2019
  ident: e_1_2_1_15_1
– ident: e_1_2_1_40_1
  doi: 10.1145/2491956.2462176
– volume: 2
  volume-title: Hidet: Task-Mapping Programming Paradigm for Deep Learning Tensor Programs. In 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems
  year: 2023
  ident: e_1_2_1_7_1
– volume-title: 47th IEEE/ACM International Conference on Software Engineering, ICSE
  year: 2025
  ident: e_1_2_1_74_1
– ident: e_1_2_1_46_1
  doi: 10.1145/3627703.3629562
– ident: e_1_2_1_71_1
  doi: 10.1145/3600006.3613139
– ident: e_1_2_1_22_1
  doi: 10.1145/3600006.3613140
– volume-title: Unity: Accelerating DNN Training Through Joint Optimization of Algebraic Transformations and Parallelization. In 16th USENIX Symposium on Operating Systems Design and Implementation, OSDI
  year: 2022
  ident: e_1_2_1_51_1
– ident: e_1_2_1_10_1
  doi: 10.1109/ICSE48619.2023.00024
– volume-title: Cocktailer: Analyzing and Optimizing Dynamic Control Flow in Deep Learning. In 17th USENIX Symposium on Operating Systems Design and Implementation, OSDI
  year: 2023
  ident: e_1_2_1_64_1
– volume-title: Fuzzing Deep Learning Compilers with HirGen. In 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
  year: 2023
  ident: e_1_2_1_30_1
– volume-title: ROLLER: Fast and Efficient Tensor Compilation for Deep Learning. In 16th USENIX Symposium on Operating Systems Design and Implementation, OSDI
  year: 2022
  ident: e_1_2_1_76_1
– volume-title: Finding Crash-Consistency Bugs with Bounded Black-Box Crash Testing. In 13th USENIX Symposium on Operating Systems Design and Implementation, OSDI
  year: 2018
  ident: e_1_2_1_32_1
– ident: e_1_2_1_36_1
  doi: 10.1145/2737924.2737959
– volume-title: Proceedings of Machine Learning and Systems 2022
  year: 2022
  ident: e_1_2_1_41_1
– volume-title: Industry Practice of Coverage-Guided Enterprise-Level DBMS Fuzzing. In 43rd IEEE/ACM International Conference on Software Engineering: Software Engineering in Practice, ICSE (SEIP)
  year: 2021
  ident: e_1_2_1_58_1
– ident: e_1_2_1_17_1
  doi: 10.1145/3341301.3359662
– ident: e_1_2_1_54_1
  doi: 10.1145/3510003.3510165
– ident: e_1_2_1_47_1
  doi: 10.1145/1480881.1480915
– ident: e_1_2_1_1_1
  doi: 10.5281/zenodo.12671619
– ident: e_1_2_1_9_1
  doi: 10.1145/3510003.3510092
– volume-title: https://www.tensorflow.org/xla. https://www.tensorflow.org/xla (visited on
  year: 2023
  ident: e_1_2_1_48_1
– ident: e_1_2_1_66_1
  doi: 10.1109/MICRO50266.2020.00044
– ident: e_1_2_1_52_1
  doi: 10.1145/3445814.3446707
– ident: e_1_2_1_23_1
  doi: 10.1145/3600006.3613140
– ident: e_1_2_1_4_1
  doi: 10.1145/3540250.3549123
– ident: e_1_2_1_16_1
  doi: 10.1145/3453483.3454038
– ident: e_1_2_1_19_1
  doi: 10.1145/3632900
– ident: e_1_2_1_37_1
– volume-title: Cody Hao Yu, and Tianqi Chen
  year: 2022
  ident: e_1_2_1_44_1
– ident: e_1_2_1_25_1
  doi: 10.1145/3586027
– volume-title: https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf (visited on
  year: 2023
  ident: e_1_2_1_34_1
– volume-title: Ansor: Generating High-Performance Tensor Programs for Deep Learning. In 14th USENIX Symposium on Operating Systems Design and Implementation, OSDI
  year: 2020
  ident: e_1_2_1_68_1
– ident: e_1_2_1_75_1
  doi: 10.1145/3540250.3549107
– ident: e_1_2_1_24_1
  doi: 10.1109/TPDS.2020.3030548
– volume-title: Proc. ACM Program. Lang., 1, OOPSLA
  year: 2017
  ident: e_1_2_1_18_1
– ident: e_1_2_1_20_1
  doi: 10.1145/2384616.2384628
– volume-title: Proceedings of Machine Learning and Systems 2022
  year: 2022
  ident: e_1_2_1_67_1
– volume-title: TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems Design and Implementation, OSDI
  year: 2018
  ident: e_1_2_1_5_1
– volume-title: https://developer.nvidia.com/tensorrt (visited on
  year: 2023
  ident: e_1_2_1_33_1
– volume-title: EINNET: Optimizing Tensor Programs with Derivation-Based Transformations. In 17th USENIX Symposium on Operating Systems Design and Implementation, OSDI
  year: 2023
  ident: e_1_2_1_70_1
– volume-title: RIFF: Reduced Instruction Footprint for Coverage-Guided Fuzzing. In 2021 USENIX Annual Technical Conference, USENIX ATC
  year: 2021
  ident: e_1_2_1_55_1
– ident: e_1_2_1_49_1
  doi: 10.1145/3503222.3507764
– ident: e_1_2_1_59_1
  doi: 10.1145/3368089.3409761
– ident: e_1_2_1_8_1
  doi: 10.1145/3551349.3560431
– volume-title: Algorithms and theory of computation handbook, "Levenshtein distance
  ident: e_1_2_1_3_1
– ident: e_1_2_1_26_1
  doi: 10.1145/3597503.3639112
– ident: e_1_2_1_28_1
  doi: 10.1145/3527317
– ident: e_1_2_1_65_1
  doi: 10.1145/3591239
– volume-title: Accelerated CPU Inference with PyTorch Inductor using torch.compile. https://pytorch.org/blog/accelerated-cpu-inference/ (visited on
  year: 2023
  ident: e_1_2_1_38_1
– ident: e_1_2_1_45_1
  doi: 10.1145/3468264.3468591
– ident: e_1_2_1_12_1
  doi: 10.14722/ndss.2019.23263
– ident: e_1_2_1_14_1
  doi: 10.1145/3341301.3359630
– ident: e_1_2_1_57_1
  doi: 10.1145/3519939.3523428
– volume-title: Glow - Compiler for Neural Network hardware accelerators. https://github.com/pytorch/glow (visited on
  year: 2023
  ident: e_1_2_1_39_1
– ident: e_1_2_1_62_1
  doi: 10.1145/1993498.1993532
– ident: e_1_2_1_61_1
  doi: 10.1145/3489048.3522655
– ident: e_1_2_1_73_1
  doi: 10.1145/3622819
– ident: e_1_2_1_21_1
  doi: 10.1145/2594291.2594334
– volume-title: 14th USENIX Symposium on Operating Systems Design and Implementation, OSDI
  year: 2020
  ident: e_1_2_1_43_1
SSID ssj0001934839
Score 2.2977936
Snippet Tensor compilers are essential for deploying deep learning applications across various hardware platforms. While powerful, they are inherently complex and...
SourceID crossref
acm
SourceType Enrichment Source
Index Database
Publisher
StartPage 1309
SubjectTerms Software and its engineering
Software testing and debugging
SubjectTermsDisplay Software and its engineering -- Software testing and debugging
Title PolyJuice: Detecting Mis-compilation Bugs in Tensor Compilers with Equality Saturation Based Rewriting
URI https://dl.acm.org/doi/10.1145/3689757
Volume 8
WOSCitedRecordID wos001356867600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2475-1421
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001934839
  issn: 2475-1421
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfK4MCFjwFifMkHxAVFNI5dJ9y6MUBo3TpRpIlL5cQ2C-rSqWvWwYEzfzbvxY4bVTvAgUsUOS-25PfT-_J7z4S85IxLkwoVSfR0ODMiylNuwFUp4swMVGx1w-kDeXiYnpxk417vd1sLczmTVZVeXWXn_5XVMAbMxtLZf2B3mBQG4B2YDk9gOzz_ivHj-ezHpxovcwdn_53BQwIMB4zKiwjzx0uX_PZ6t_7WpMJOwI-dLxq5AAJi4avd9l2xJQgWbPzp_wCFh8WMK-yD5BWeN2vHQQ02mSHDvREeQvjcrzNcvo2LBhP-6-m8duf95fcyIPS4dAHZXfjnJ1CE9KAmovthVZ6u1nAOwe7j2g_68AXjLn-uAzifEt-IPACOiGLuaqZb-Zx2YHh0NP58MGQdiQs6OOtob3C5xfWagWMTjWSQZtJ1xN5os-2_3CA3mRQZJgeOfnWidVnCwZR0Vdc41xtPj0ZNcdYxajrWyeQeuePdCjp0cLhPeqbaJnfbKzuol-APiA3oeEsDNugGNihig5YVddigARsUsUFbbNA1NmiDDRqw8ZB8eb8_2fsY-as2IsWkXEZaxkxaDcYc0308auU6LxJmMlVkNs9zyxKdq0Fh08JyrqzQipl-ogfGFmARxskjslXNK_OYUJtY1dfghzIgZSDeherHVoAjkWrQKGyHbMOOTc9dM5Wp38cd8qrdwWnhu9PjJSmzqaucF2tCGgjbOTZInly7wlNye42_Z2RruajNc3KruFyWF4sXDbv_AO-Ufk4
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PolyJuice%3A+Detecting+Mis-compilation+Bugs+in+Tensor+Compilers+with+Equality+Saturation+Based+Rewriting&rft.jtitle=Proceedings+of+ACM+on+programming+languages&rft.au=Zhou%2C+Chijin&rft.au=Qian%2C+Bingzhou&rft.au=Go%2C+Gwihwan&rft.au=Zhang%2C+Quan&rft.date=2024-10-08&rft.pub=ACM&rft.eissn=2475-1421&rft.volume=8&rft.issue=OOPSLA2&rft.spage=1309&rft.epage=1335&rft_id=info:doi/10.1145%2F3689757&rft.externalDocID=3689757
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1421&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1421&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1421&client=summon