A Demonic Outcome Logic for Randomized Nondeterminism

Programs increasingly rely on randomization in applications such as cryptography and machine learning. Analyzing randomized programs has been a fruitful research direction, but there is a gap when programs also exploit nondeterminism (for concurrency, efficiency, or algorithmic design). In this pape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of ACM on programming languages Jg. 9; H. POPL; S. 539 - 568
Hauptverfasser: Zilberstein, Noam, Kozen, Dexter, Silva, Alexandra, Tassarotti, Joseph
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY, USA ACM 07.01.2025
Schlagworte:
ISSN:2475-1421, 2475-1421
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Programs increasingly rely on randomization in applications such as cryptography and machine learning. Analyzing randomized programs has been a fruitful research direction, but there is a gap when programs also exploit nondeterminism (for concurrency, efficiency, or algorithmic design). In this paper, we introduce Demonic Outcome Logic for reasoning about programs that exploit both randomization and nondeterminism. The logic includes several novel features, such as reasoning about multiple executions in tandem and manipulating pre- and postconditions using familiar equational laws—including the distributive law of probabilistic choices over nondeterministic ones. We also give rules for loops that both establish termination and quantify the distribution of final outcomes from a single premise. We illustrate the reasoning capabilities of Demonic Outcome Logic through several case studies, including the Monty Hall problem, an adversarial protocol for simulating fair coins, and a heuristic based probabilistic SAT solver.
AbstractList Programs increasingly rely on randomization in applications such as cryptography and machine learning. Analyzing randomized programs has been a fruitful research direction, but there is a gap when programs also exploit nondeterminism (for concurrency, efficiency, or algorithmic design). In this paper, we introduce Demonic Outcome Logic for reasoning about programs that exploit both randomization and nondeterminism. The logic includes several novel features, such as reasoning about multiple executions in tandem and manipulating pre- and postconditions using familiar equational laws—including the distributive law of probabilistic choices over nondeterministic ones. We also give rules for loops that both establish termination and quantify the distribution of final outcomes from a single premise. We illustrate the reasoning capabilities of Demonic Outcome Logic through several case studies, including the Monty Hall problem, an adversarial protocol for simulating fair coins, and a heuristic based probabilistic SAT solver.
ArticleNumber 19
Author Kozen, Dexter
Zilberstein, Noam
Tassarotti, Joseph
Silva, Alexandra
Author_xml – sequence: 1
  givenname: Noam
  orcidid: 0000-0001-6388-063X
  surname: Zilberstein
  fullname: Zilberstein, Noam
  email: noamz@cs.cornell.edu
  organization: Cornell University, Ithaca, USA
– sequence: 2
  givenname: Dexter
  orcidid: 0000-0002-8007-4725
  surname: Kozen
  fullname: Kozen, Dexter
  email: kozen@cs.cornell.edu
  organization: Cornell University, Ithaca, USA
– sequence: 3
  givenname: Alexandra
  orcidid: 0000-0001-5014-9784
  surname: Silva
  fullname: Silva, Alexandra
  email: alexandra.silva@cornell.edu
  organization: Cornell University, Ithaca, USA
– sequence: 4
  givenname: Joseph
  orcidid: 0000-0001-5692-3347
  surname: Tassarotti
  fullname: Tassarotti, Joseph
  email: jt4767@nyu.edu
  organization: New York University, New York, USA
BookMark eNptj0FLAzEUhINUsNbi3dPePK0mm6Rv91iqVWGxIHpe3iZZiTSJJPGgv96VVhHxNG-Yj-HNMZn44A0hp4xeMCbkJQcqaikPyLQSIEsmKjb5dR-ReUovlFLWcFHzZkrksrgyLniris1bVsGZog3PoxtCLB7Q6-Dsh9HFffDaZBOd9Ta5E3I44DaZ-V5n5Gl9_bi6LdvNzd1q2ZZYAeRSaVwgVVTyZtEP2PdKM8NwYXpADlzVVIGGRjdCI9Y9UFk14_ugKXBdaeAzcr7rVTGkFM3QvUbrML53jHZfg7v94JEs_5DKZsw2-BzRbv_hz3Y8KvdT-h1-Aj3wX_Q
CitedBy_id crossref_primary_10_1145_3747514
crossref_primary_10_1145_3743131
Cites_doi 10.1007/BFb0073967
10.46298/lmcs-18(2:21)2022
10.1007/BFb0083084
10.1016/S1571-0661(05)82521-6
10.1016/0022-0000(78)90048-X
10.1016/j.entcs.2008.05.023
10.1145/360933.360975
10.1109/LICS.1989.39173
10.1145/3674635
10.1016/S1571-0661(05)80746-7
10.1109/LICS52264.2021.9470678
10.1016/j.entcs.2015.12.021
10.1016/j.entcs.2004.04.019
10.1007/bf01213492
10.1137/0205035
10.1007/3-540-44618-4_26
10.1016/j.tcs.2006.12.035
10.1145/6490.6494
10.1109/lics.2019.8785707
10.1016/J.JLAP.2011.04.005
10.1109/lics.2019.8785673
10.1016/j.entcs.2009.01.002
10.18154/RWTH-2019-01829
10.1017/S0960129505005074
10.1145/3586045
10.1007/b138392
10.4230/LIPIcs.CONCUR.2020.28
10.1145/3158121
10.1145/229542.229547
10.1145/363235.363259
10.23638/LMCS-13(1:2)2017
10.46298/lmcs-17(3:10)2021
10.1016/S0304-3975(00)00208-5
10.1145/256167.256195
10.1109/LICS.2002.1029838
10.1093/comjnl
10.1145/3649821
10.1145/3290377
10.1016/S0167-6423(96)00019-6
10.1145/3571223
10.1007/BF00288637
10.1145/2676726.2676980
10.1145/3689740
10.1007/BFb0015027
10.1145/3571195
10.1007/978-3-642-39799-8_34
10.1145/3656437
10.1007/978-3-031-61716-4_11
10.4230/LIPIcs.CALCO.2021.11
10.1007/978-3-319-89884-1_5
10.1145/3310131
10.1145/800061.808758
ContentType Journal Article
Copyright Owner/Author
Copyright_xml – notice: Owner/Author
DBID AAYXX
CITATION
DOI 10.1145/3704855
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2475-1421
EndPage 568
ExternalDocumentID 10_1145_3704855
3704855
GrantInformation_xml – fundername: NSF
  grantid: CCF-2008083
– fundername: ERC
  grantid: 101002697
GroupedDBID AAKMM
AAYFX
ACM
AEFXT
AEJOY
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
GUFHI
LHSKQ
M~E
OK1
ROL
AAYXX
CITATION
ID FETCH-LOGICAL-a277t-cda6a0c05396bfabbcd1e1a6eb7a373c80c7d79d94daa8b705294857d073d2d73
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001470367300021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2475-1421
IngestDate Tue Nov 18 21:20:26 EST 2025
Sat Nov 29 07:50:10 EST 2025
Mon Jun 23 16:40:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue POPL
Keywords Demonic Nondeterminism
Program Logics
Probabilistic Programming
Language English
License This work is licensed under a Creative Commons Attribution International 4.0 License.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a277t-cda6a0c05396bfabbcd1e1a6eb7a373c80c7d79d94daa8b705294857d073d2d73
ORCID 0000-0002-8007-4725
0000-0001-6388-063X
0000-0001-5014-9784
0000-0001-5692-3347
OpenAccessLink https://dl.acm.org/doi/10.1145/3704855
PageCount 30
ParticipantIDs crossref_primary_10_1145_3704855
crossref_citationtrail_10_1145_3704855
acm_primary_3704855
PublicationCentury 2000
PublicationDate 2025-01-07
PublicationDateYYYYMMDD 2025-01-07
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-07
  day: 07
PublicationDecade 2020
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationTitle Proceedings of ACM on programming languages
PublicationTitleAbbrev ACM PACMPL
PublicationYear 2025
Publisher ACM
Publisher_xml – name: ACM
References Regina Tix, Klaus Keimel, and Gordon Plotkin. 2009. Semantic Domains for Combining Probability and Non-Determinism. Electronic Notes in Theoretical Computer Science, 222 (2009), 3–99. issn:1571-0661 https://doi.org/10.1016/j.entcs.2009.01.002 10.1016/j.entcs.2009.01.002
Charles Antony Richard Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM, 12, 10 (1969), Oct., 576–580. issn:0001-0782 https://doi.org/10.1145/363235.363259 10.1145/363235.363259
Edsger W. Dijkstra. 1976. A Discipline of Programming.. Prentice-Hall. isbn:013215871X
Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett. 2023. A Core Calculus for Equational Proofs of Cryptographic Protocols. Proc. ACM Program. Lang., 7, POPL (2023), Article 30, jan, 27 pages. https://doi.org/10.1145/3571223 10.1145/3571223
Matteo Mio and Valeria Vignudelli. 2020. Monads and Quantitative Equational Theories for Nondeterminism and Probability. In 31st International Conference on Concurrency Theory (CONCUR 2020), Igor Konnov and Laura Kovács (Eds.) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 171). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany. 28:1–28:18. isbn:978-3-95977-160-3 issn:1868-8969 https://doi.org/10.4230/LIPIcs.CONCUR.2020.28 10.4230/LIPIcs.CONCUR.2020.28
Joseph Tassarotti and Robert Harper. 2019. A Separation Logic for Concurrent Randomized Programs. Proc. ACM Program. Lang., 3, POPL (2019), Article 64, Jan, 30 pages. https://doi.org/10.1145/3290377 10.1145/3290377
Dana Scott. 1972. Continuous lattices. In Toposes, Algebraic Geometry and Logic, F. W. Lawvere (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg. 97–136. isbn:978-3-540-37609-5 https://doi.org/10.1007/BFb0073967 10.1007/BFb0073967
Bart Jacobs. 2008. Coalgebraic Trace Semantics for Combined Possibilitistic and Probabilistic Systems. Electronic Notes in Theoretical Computer Science, 203, 5 (2008), 131–152. issn:1571-0661 https://doi.org/10.1016/j.entcs.2008.05.023 Proceedings of the Ninth Workshop on Coalgebraic Methods in Computer Science (CMCS 2008). 10.1016/j.entcs.2008.05.023
Benjamin Lucien Kaminski. 2019. Advanced weakest precondition calculi for probabilistic programs. RWTH Aachen University. Aachen. https://doi.org/10.18154/RWTH-2019-01829 10.18154/RWTH-2019-01829
Krzysztof Apt and Gordon Plotkin. 1986. Countable nondeterminism and random assignment. J. ACM, 33, 4 (1986), aug, 724–767. issn:0004-5411 https://doi.org/10.1145/6490.6494 10.1145/6490.6494
Regina Tix. 2000. Convex Power Constructions for Continuous D-Cones. Electronic Notes in Theoretical Computer Science, 35 (2000), 206–229. issn:1571-0661 https://doi.org/10.1016/S1571-0661(05)80746-7 Workshop on Domains IV. 10.1016/S1571-0661(05)80746-7
Maaike Zwart. 2020. On the Non-Compositionality of Monads via Distributive Laws. Ph.D. Dissertation. University of Oxford. https://ora.ox.ac.uk/objects/uuid:b2222b14-3895-4c87-91f4-13a8d046febb
Filippo Bonchi, Ana Sokolova, and Valeria Vignudelli. 2019. The Theory of Traces for Systems with Nondeterminism and Probability. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 1–14. https://doi.org/10.1109/lics.2019.8785673 10.1109/lics.2019.8785673
Klaus Keimel and Gordon Plotkin. 2017. Mixed powerdomains for probability and nondeterminism. Logical Methods in Computer Science, Volume 13, Issue 1 (2017), Jan., https://doi.org/10.23638/LMCS-13(1:2)2017 10.23638/LMCS-13(1:2)2017
Roberto Segala. 1995. Modeling and verification of randomized distributed real-time systems. Ph.D. Dissertation. USA. https://groups.csail.mit.edu/tds/papers/Segala/phd1.pdf
Jerry den Hartog. 2002. Probabilistic Extensions of Semantical Models. Ph.D. Dissertation. Vrije Universiteit Amsterdam. https://core.ac.uk/reader/15452110
Heng Guo, Mark Jerrum, and Jingcheng Liu. 2019. Uniform Sampling Through the Lovász Local Lemma. J. Acm, 66, 3 (2019), Article 18, apr, 31 pages. issn:0004-5411 https://doi.org/10.1145/3310131 10.1145/3310131
Filippo Bonchi, Alexandra Silva, and Ana Sokolova. 2021. Distribution Bisimilarity via the Power of Convex Algebras. Logical Methods in Computer Science, Volume 17, Issue 3 (2021), July, https://doi.org/10.46298/lmcs-17(3:10)2021 10.46298/lmcs-17(3:10)2021
Jifeng He, Karen Seidel, and Annabelle McIver. 1997. Probabilistic models for the guarded command language. Science of Computer Programming, 28, 2 (1997), 171–192. issn:0167-6423 https://doi.org/10.1016/S0167-6423(96)00019-6 Formal Specifications: Foundations, Methods, Tools and Applications. 10.1016/S0167-6423(96)00019-6
Jerry den Hartog. 1999. Verifying Probabilistic Programs Using a Hoare like Logic. In Advances in Computing Science — ASIAN’99, P. S. Thiagarajan and Roland Yap (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 113–125. isbn:978-3-540-46674-1
Noam Zilberstein, Angelina Saliling, and Alexandra Silva. 2024. Outcome Separation Logic: Local Reasoning for Correctness and Incorrectness with Computational Effects. Proc. ACM Program. Lang., 8, OOPSLA1 (2024), Apr, https://doi.org/10.1145/3649821 10.1145/3649821
Linpeng Zhang, Noam Zilberstein, Benjamin Lucien Kaminski, and Alexandra Silva. 2024. Quantitative Weakest Hyper Pre: Unifying Correctness and Incorrectness Hyperproperties via Predicate Transformers. Proc. ACM Program. Lang., 8, OOPSLA2 (2024), Article 300, oct, 30 pages. https://doi.org/10.1145/3689740 10.1145/3689740
Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Commun. ACM, 18, 8 (1975), Aug, 453–457. issn:0001-0782 https://doi.org/10.1145/360933.360975 10.1145/360933.360975
Daniele Varacca. 2003. Probability, Nondeterminism and Concurrency: Two Denotational Models for Probabilistic Computation. Ph.D. Dissertation. University of Aarhus. https://www.brics.dk/DS/03/14
Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In Computer Aided Verification, Natasha Sharygina and Helmut Veith (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 511–526. isbn:978-3-642-39799-8 https://doi.org/10.1007/978-3-642-39799-8_34 10.1007/978-3-642-39799-8_34
Annabelle McIver, Carroll Morgan, Benjamin Lucien Kaminski, and Joost-Pieter Katoen. 2018. A New Proof Rule for Almost-Sure Termination. Proc. ACM Program. Lang., 2, POPL (2018), Article 33, Jan, 28 pages. https://doi.org/10.1145/3158121 10.1145/3158121
John von Neumann. 1951. Various techniques used in connection with random digits. In Monte Carlo Method, A.S. Householder, G.E. Forsythe, and H.H. Germond (Eds.). National Bureau of Standards Applied Mathematics Series, 12, Washington, D.C.: U.S. Government Printing Office. 36–38.
Maaike Zwart and Dan Marsden. 2019. No-Go Theorems for Distributive Laws. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 1–13. https://doi.org/10.1109/lics.2019.8785707 10.1109/lics.2019.8785707
Ricardo Corin and Jerry den Hartog. 2006. A Probabilistic Hoare-style Logic for Game-Based Cryptographic Proofs. In Automata, Languages and Programming. Springer Berlin Heidelberg, Berlin, Heidelberg. 252–263. isbn:978-3-540-35908-1
Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). Association for Computing Machinery, New York, NY, USA. 637–650. isbn:9781450333009 https://doi.org/10.1145/2676726.2676980 10.1145/2676726.2676980
Robert Rand and Steve Zdancewic. 2015. VPHL: A Verified Partial-Correctness Logic for Probabilistic Programs. In Electronic Notes in Theoretical Computer Science. 319, 351–367. issn:1571-0661 https://doi.org/10.1016/j.entcs.2015.12.021 The 31st Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXI). 10.1016/j.entcs.2015.12.021
Roberto Segala and Nancy Lynch. 1994. Probabilistic simulations for probabilistic processes. In CONCUR ’94: Concurrency Theory, Bengt Jonsson and Joachim Parrow (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 481–496. isbn:978-3-540-48654-1 https://doi.org/10.1007/BFb0015027 10.1007/BFb0015027
Jon Beck. 1969. Distributive laws. In Seminar on Triples and Categorical Homology Theory, B. Eckmann (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg. 119–140. isbn:978-3-540-36091-9 https://doi.org/10.1007/BFb0083084 10.1007/BFb0083084
Filippo Bonchi, Ana Sokolova, and Valeria Vignudelli. 2021. Presenting Convex Sets of Probability Distributions by Convex Semilattices and Unique Bases. In 9th Conference on Algebra and Coalgebra in Computer Science (CALCO 2021), Fabio Gadducci and Alexandra Silva (Eds.) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 211). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany. 11:1–11:18. isbn:978-3-95977-212-9 issn:1868-8969 https://doi.org/10.4230/LIPIcs.CALCO.2021.11 10.4230/LIPIcs.CALCO.2021.11
Jerry den Hartog. 1998. Comparative semantics for a process language with probabilistic choice and non-determinism. Vrije Universiteit, Netherlands. Imported from DIES.
Carroll Morgan, Annabelle McIver, Karen Seidel, and J. W. Sanders. 1996. Refinement-oriented probability for CSP. Form. Asp. Comput., 8, 6 (1996), nov, 617–647. issn:0934-5043 https://doi.org/10.1007/bf01213492 10.1007/bf01213492
Gordon Plotkin. 1976. A Powerdomain Construction. SIAM J. Comput., 5, 3 (1976), 452–487. https://doi.org/10.1137/0205035 arxiv:https://doi.org/10.1137/0205035. 10.1137/0205035
Michael Smyth. 1978. Power domains. J. Comput. System Sci., 16, 1 (1978), 23–36. issn:0022-0000 https://doi.org/10.1016/0022-0000(78)90048-X 10.1016/0022-0000(78)90048-X
Regina Tix. 1999. Continuous D-cones: convexity and powerdomain constructions. Ph.D. Dissertation. Darmstadt University of Technology, Germany. isbn:978-3-8265-6396-6 https://d-nb.info/957239157
Filippo Bonchi, Ana Sokolova, and Valeria Vignudelli.
e_1_2_2_4_1
e_1_2_2_24_1
e_1_2_2_49_1
e_1_2_2_6_1
e_1_2_2_22_1
den Hartog Jerry (e_1_2_2_14_1)
e_1_2_2_20_1
e_1_2_2_2_1
Corin Ricardo (e_1_2_2_11_1)
e_1_2_2_41_1
e_1_2_2_43_1
e_1_2_2_64_1
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_45_1
e_1_2_2_66_1
e_1_2_2_26_1
e_1_2_2_47_1
e_1_2_2_38_1
e_1_2_2_59_1
e_1_2_2_30_1
e_1_2_2_51_1
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_53_1
e_1_2_2_17_1
e_1_2_2_34_1
e_1_2_2_55_1
e_1_2_2_15_1
e_1_2_2_36_1
e_1_2_2_57_1
e_1_2_2_25_1
e_1_2_2_48_1
e_1_2_2_5_1
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_3_1
e_1_2_2_40_1
e_1_2_2_63_1
e_1_2_2_42_1
e_1_2_2_65_1
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_44_1
e_1_2_2_67_1
Dijkstra Edsger W. (e_1_2_2_18_1)
e_1_2_2_27_1
e_1_2_2_46_1
von Neumann John (e_1_2_2_60_1) 1951
Zilberstein Noam (e_1_2_2_62_1) 2024
e_1_2_2_61_1
e_1_2_2_37_1
e_1_2_2_12_1
e_1_2_2_39_1
e_1_2_2_10_1
den Hartog Jerry (e_1_2_2_13_1)
e_1_2_2_52_1
e_1_2_2_31_1
e_1_2_2_54_1
e_1_2_2_33_1
e_1_2_2_56_1
e_1_2_2_16_1
e_1_2_2_35_1
e_1_2_2_58_1
e_1_2_2_50_1
References_xml – reference: Filippo Bonchi, Ana Sokolova, and Valeria Vignudelli. 2021. Presenting Convex Sets of Probability Distributions by Convex Semilattices and Unique Bases. In 9th Conference on Algebra and Coalgebra in Computer Science (CALCO 2021), Fabio Gadducci and Alexandra Silva (Eds.) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 211). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany. 11:1–11:18. isbn:978-3-95977-212-9 issn:1868-8969 https://doi.org/10.4230/LIPIcs.CALCO.2021.11 10.4230/LIPIcs.CALCO.2021.11
– reference: Michael Mislove, Joël Ouaknine, and James Worrell. 2004. Axioms for Probability and Nondeterminism. Electronic Notes in Theoretical Computer Science, 96 (2004), 7–28. issn:1571-0661 https://doi.org/10.1016/j.entcs.2004.04.019 Proceedings of the 10th International Workshop on Expressiveness in Concurrency. 10.1016/j.entcs.2004.04.019
– reference: Claire Jones and Gordon Plotkin. 1989. A Probabilistic Powerdomain of Evaluations. In Fourth Annual Symposium on Logic in Computer Science. 186–195. https://doi.org/10.1109/lics.1989.39173 10.1109/lics.1989.39173
– reference: Annabelle McIver and Carroll Morgan. 2001. Partial correctness for probabilistic demonic programs. Theoretical Computer Science, 266, 1 (2001), 513–541. issn:0304-3975 https://doi.org/10.1016/S0304-3975(00)00208-5 10.1016/S0304-3975(00)00208-5
– reference: Michael Smyth. 1978. Power domains. J. Comput. System Sci., 16, 1 (1978), 23–36. issn:0022-0000 https://doi.org/10.1016/0022-0000(78)90048-X 10.1016/0022-0000(78)90048-X
– reference: Maaike Zwart and Dan Marsden. 2019. No-Go Theorems for Distributive Laws. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 1–13. https://doi.org/10.1109/lics.2019.8785707 10.1109/lics.2019.8785707
– reference: Claire Jones. 1990. Probabilistic Non-determinism. Ph.D. Dissertation. University of Edinburgh. http://hdl.handle.net/1842/413
– reference: Matteo Mio and Valeria Vignudelli. 2020. Monads and Quantitative Equational Theories for Nondeterminism and Probability. In 31st International Conference on Concurrency Theory (CONCUR 2020), Igor Konnov and Laura Kovács (Eds.) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 171). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany. 28:1–28:18. isbn:978-3-95977-160-3 issn:1868-8969 https://doi.org/10.4230/LIPIcs.CONCUR.2020.28 10.4230/LIPIcs.CONCUR.2020.28
– reference: Thibault Dardinier and Peter Müller. 2024. Hyper Hoare Logic: (Dis-)Proving Program Hyperproperties. Proc. ACM Program. Lang., 8, PLDI (2024), Article 207, jun, 25 pages. https://doi.org/10.1145/3656437 10.1145/3656437
– reference: Harald Søndergaard and Peter Sestoft. 1992. Non-determinism in Functional Languages. Comput. J., 35, 5 (1992), 10, 514–523. issn:0010-4620 https://doi.org/10.1093/comjnl/35.5.514 arxiv:https://academic.oup.com/comjnl/article-pdf/35/5/514/1125580/35-5-514.pdf. 10.1093/comjnl/35.5.514
– reference: Noam Zilberstein, Angelina Saliling, and Alexandra Silva. 2024. Outcome Separation Logic: Local Reasoning for Correctness and Incorrectness with Computational Effects. Proc. ACM Program. Lang., 8, OOPSLA1 (2024), Apr, https://doi.org/10.1145/3649821 10.1145/3649821
– reference: Maaike Zwart. 2020. On the Non-Compositionality of Monads via Distributive Laws. Ph.D. Dissertation. University of Oxford. https://ora.ox.ac.uk/objects/uuid:b2222b14-3895-4c87-91f4-13a8d046febb
– reference: Zohar Manna and Amir Pnueli. 1974. Axiomatic Approach to Total Correctness of Programs. Acta Inf., 3, 3 (1974), sep, 243–263. issn:0001-5903 https://doi.org/10.1007/BF00288637 10.1007/BF00288637
– reference: Regina Tix, Klaus Keimel, and Gordon Plotkin. 2009. Semantic Domains for Combining Probability and Non-Determinism. Electronic Notes in Theoretical Computer Science, 222 (2009), 3–99. issn:1571-0661 https://doi.org/10.1016/j.entcs.2009.01.002 10.1016/j.entcs.2009.01.002
– reference: Annabelle McIver, Carroll Morgan, Benjamin Lucien Kaminski, and Joost-Pieter Katoen. 2018. A New Proof Rule for Almost-Sure Termination. Proc. ACM Program. Lang., 2, POPL (2018), Article 33, Jan, 28 pages. https://doi.org/10.1145/3158121 10.1145/3158121
– reference: Dexter Kozen. 1997. Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst., 19, 3 (1997), May, 427–443. issn:0164-0925 https://doi.org/10.1145/256167.256195 10.1145/256167.256195
– reference: Ricardo Corin and Jerry den Hartog. 2006. A Probabilistic Hoare-style Logic for Game-Based Cryptographic Proofs. In Automata, Languages and Programming. Springer Berlin Heidelberg, Berlin, Heidelberg. 252–263. isbn:978-3-540-35908-1
– reference: Jerry den Hartog. 1998. Comparative semantics for a process language with probabilistic choice and non-determinism. Vrije Universiteit, Netherlands. Imported from DIES.
– reference: Daniele Varacca and Glynn Winskel. 2006. Distributing probability over non-determinism. Mathematical Structures in Computer Science, 16, 1 (2006), 87–113. https://doi.org/10.1017/S0960129505005074 10.1017/S0960129505005074
– reference: Dexter Kozen. 1983. A Probabilistic PDL. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing (STOC ’83). Association for Computing Machinery, New York, NY, USA. 291–297. isbn:0897910990 https://doi.org/10.1145/800061.808758 10.1145/800061.808758
– reference: Louis Parlant. 2020. Monad Composition via Preservation of Algebras. Ph.D. Dissertation. University College London. https://discovery.ucl.ac.uk/id/eprint/10112228/
– reference: Linpeng Zhang, Noam Zilberstein, Benjamin Lucien Kaminski, and Alexandra Silva. 2024. Quantitative Weakest Hyper Pre: Unifying Correctness and Incorrectness Hyperproperties via Predicate Transformers. Proc. ACM Program. Lang., 8, OOPSLA2 (2024), Article 300, oct, 30 pages. https://doi.org/10.1145/3689740 10.1145/3689740
– reference: Roberto Segala. 1995. Modeling and verification of randomized distributed real-time systems. Ph.D. Dissertation. USA. https://groups.csail.mit.edu/tds/papers/Segala/phd1.pdf
– reference: Charles Antony Richard Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM, 12, 10 (1969), Oct., 576–580. issn:0001-0782 https://doi.org/10.1145/363235.363259 10.1145/363235.363259
– reference: Jerry den Hartog. 2002. Probabilistic Extensions of Semantical Models. Ph.D. Dissertation. Vrije Universiteit Amsterdam. https://core.ac.uk/reader/15452110
– reference: Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Commun. ACM, 18, 8 (1975), Aug, 453–457. issn:0001-0782 https://doi.org/10.1145/360933.360975 10.1145/360933.360975
– reference: Edsger W. Dijkstra. 1976. A Discipline of Programming.. Prentice-Hall. isbn:013215871X
– reference: Alejandro Aguirre, Philipp G. Haselwarter, Markus de Medeiros, Kwing Hei Li, Simon Oddershede Gregersen, Joseph Tassarotti, and Lars Birkedal. 2024. Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic Programs. Proc. ACM Program. Lang., 8, ICFP (2024), Article 246, Aug., 33 pages. https://doi.org/10.1145/3674635 10.1145/3674635
– reference: Joseph Tassarotti. 2018. Verifying Concurrent Randomized Algorithms. Ph.D. Dissertation. Carnegie Mellon University. https://csd.cmu.edu/academics/doctoral/degrees-conferred/joseph-tassarotti
– reference: Noam Zilberstein. 2024. Outcome Logic: A Unified Approach to the Metatheory of Program Logics with Branching Effects. arxiv:2401.04594.
– reference: Tony Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. 2011. Concurrent Kleene Algebra and its Foundations. J. Log. Algebraic Methods Program., 80, 6 (2011), 266–296. https://doi.org/10.1016/J.JLAP.2011.04.005 10.1016/J.JLAP.2011.04.005
– reference: Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning. In CONCUR 2004 - Concurrency Theory. Springer Berlin Heidelberg, Berlin, Heidelberg. 49–67. isbn:978-3-540-28644-8 https://doi.org/10.1016/j.tcs.2006.12.035 10.1016/j.tcs.2006.12.035
– reference: Gordon Plotkin. 1976. A Powerdomain Construction. SIAM J. Comput., 5, 3 (1976), 452–487. https://doi.org/10.1137/0205035 arxiv:https://doi.org/10.1137/0205035. 10.1137/0205035
– reference: Jifeng He, Karen Seidel, and Annabelle McIver. 1997. Probabilistic models for the guarded command language. Science of Computer Programming, 28, 2 (1997), 171–192. issn:0167-6423 https://doi.org/10.1016/S0167-6423(96)00019-6 Formal Specifications: Foundations, Methods, Tools and Applications. 10.1016/S0167-6423(96)00019-6
– reference: Gilles Barthe, Thomas Espitau, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2018. An Assertion-Based Program Logic for Probabilistic Programs. In Programming Languages and Systems. Springer International Publishing, Cham. 117–144. isbn:978-3-319-89884-1 https://doi.org/10.1007/978-3-319-89884-1_5 10.1007/978-3-319-89884-1_5
– reference: Krzysztof Apt and Gordon Plotkin. 1986. Countable nondeterminism and random assignment. J. ACM, 33, 4 (1986), aug, 724–767. issn:0004-5411 https://doi.org/10.1145/6490.6494 10.1145/6490.6494
– reference: Filippo Bonchi, Alexandra Silva, and Ana Sokolova. 2021. Distribution Bisimilarity via the Power of Convex Algebras. Logical Methods in Computer Science, Volume 17, Issue 3 (2021), July, https://doi.org/10.46298/lmcs-17(3:10)2021 10.46298/lmcs-17(3:10)2021
– reference: John von Neumann. 1951. Various techniques used in connection with random digits. In Monte Carlo Method, A.S. Householder, G.E. Forsythe, and H.H. Germond (Eds.). National Bureau of Standards Applied Mathematics Series, 12, Washington, D.C.: U.S. Government Printing Office. 36–38.
– reference: Alejandro Aguirre and Lars Birkedal. 2023. Step-Indexed Logical Relations for Countable Nondeterminism and Probabilistic Choice. Proc. ACM Program. Lang., 7, POPL (2023), 33–60. https://doi.org/10.1145/3571195 10.1145/3571195
– reference: Dana Scott. 1972. Continuous lattices. In Toposes, Algebraic Geometry and Logic, F. W. Lawvere (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg. 97–136. isbn:978-3-540-37609-5 https://doi.org/10.1007/BFb0073967 10.1007/BFb0073967
– reference: Bart Jacobs. 2021. From Multisets over Distributions to Distributions over Multisets. In Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’21). Association for Computing Machinery, New York, NY, USA. Article 39, 13 pages. isbn:9781665448956 https://doi.org/10.1109/LICS52264.2021.9470678 10.1109/LICS52264.2021.9470678
– reference: Heng Guo, Mark Jerrum, and Jingcheng Liu. 2019. Uniform Sampling Through the Lovász Local Lemma. J. Acm, 66, 3 (2019), Article 18, apr, 31 pages. issn:0004-5411 https://doi.org/10.1145/3310131 10.1145/3310131
– reference: Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In Computer Aided Verification, Natasha Sharygina and Helmut Veith (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 511–526. isbn:978-3-642-39799-8 https://doi.org/10.1007/978-3-642-39799-8_34 10.1007/978-3-642-39799-8_34
– reference: Bart Jacobs. 2008. Coalgebraic Trace Semantics for Combined Possibilitistic and Probabilistic Systems. Electronic Notes in Theoretical Computer Science, 203, 5 (2008), 131–152. issn:1571-0661 https://doi.org/10.1016/j.entcs.2008.05.023 Proceedings of the Ninth Workshop on Coalgebraic Methods in Computer Science (CMCS 2008). 10.1016/j.entcs.2008.05.023
– reference: Robert Rand and Steve Zdancewic. 2015. VPHL: A Verified Partial-Correctness Logic for Probabilistic Programs. In Electronic Notes in Theoretical Computer Science. 319, 351–367. issn:1571-0661 https://doi.org/10.1016/j.entcs.2015.12.021 The 31st Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXI). 10.1016/j.entcs.2015.12.021
– reference: Jerry den Hartog. 1999. Verifying Probabilistic Programs Using a Hoare like Logic. In Advances in Computing Science — ASIAN’99, P. S. Thiagarajan and Roland Yap (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 113–125. isbn:978-3-540-46674-1
– reference: Noam Zilberstein, Dexter Kozen, Alexandra Silva, and Joseph Tassarotti. 2024. A Demonic Outcome Logic for Randomized Nondeterminism (Extended Version). arxiv:2410.22540. arxiv:2410.22540
– reference: Filippo Bonchi, Ana Sokolova, and Valeria Vignudelli. 2022. The Theory of Traces for Systems with Nondeterminism, Probability, and Termination. Logical Methods in Computer Science, Volume 18, Issue 2 (2022), June, https://doi.org/10.46298/lmcs-18(2:21)2022 10.46298/lmcs-18(2:21)2022
– reference: Joseph Tassarotti and Robert Harper. 2019. A Separation Logic for Concurrent Randomized Programs. Proc. ACM Program. Lang., 3, POPL (2019), Article 64, Jan, 30 pages. https://doi.org/10.1145/3290377 10.1145/3290377
– reference: Annabelle McIver and Carroll Morgan. 2005. Abstraction, Refinement and Proof for Probabilistic Systems. Springer. isbn:9780387401157 lccn:2004057839 https://doi.org/10.1007/b138392 10.1007/b138392
– reference: Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett. 2023. A Core Calculus for Equational Proofs of Cryptographic Protocols. Proc. ACM Program. Lang., 7, POPL (2023), Article 30, jan, 27 pages. https://doi.org/10.1145/3571223 10.1145/3571223
– reference: Michael Mislove. 2000. Nondeterminism and Probabilistic Choice: Obeying the Laws. In CONCUR 2000 — Concurrency Theory, Catuscia Palamidessi (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg. 350–365. isbn:978-3-540-44618-7 https://doi.org/10.1007/3-540-44618-4_26 10.1007/3-540-44618-4_26
– reference: Daniele Varacca. 2002. The powerdomain of indexed valuations. In Proceedings 17th Annual IEEE Symposium on Logic in Computer Science. 299–308. https://doi.org/10.1109/LICS.2002.1029838 10.1109/LICS.2002.1029838
– reference: Daniele Varacca. 2003. Probability, Nondeterminism and Concurrency: Two Denotational Models for Probabilistic Computation. Ph.D. Dissertation. University of Aarhus. https://www.brics.dk/DS/03/14/
– reference: Jon Beck. 1969. Distributive laws. In Seminar on Triples and Categorical Homology Theory, B. Eckmann (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg. 119–140. isbn:978-3-540-36091-9 https://doi.org/10.1007/BFb0083084 10.1007/BFb0083084
– reference: Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). Association for Computing Machinery, New York, NY, USA. 637–650. isbn:9781450333009 https://doi.org/10.1145/2676726.2676980 10.1145/2676726.2676980
– reference: Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Probabilistic Predicate Transformers. ACM Trans. Program. Lang. Syst., 18, 3 (1996), may, 325–353. issn:0164-0925 https://doi.org/10.1145/229542.229547 10.1145/229542.229547
– reference: Noam Zilberstein, Derek Dreyer, and Alexandra Silva. 2023. Outcome Logic: A Unifying Foundation for Correctness and Incorrectness Reasoning. Proc. ACM Program. Lang., 7, OOPSLA1 (2023), Article 93, Apr, 29 pages. https://doi.org/10.1145/3586045 10.1145/3586045
– reference: Jerry den Hartog and Erik de Vink. 1999. Mixing Up Nondeterminism and Probability: a preliminary report. Electronic Notes in Theoretical Computer Science, 22 (1999), 88–110. issn:1571-0661 https://doi.org/10.1016/S1571-0661(05)82521-6 PROBMIV’98, First International Workshop on Probabilistic Methods in Verification. 10.1016/S1571-0661(05)82521-6
– reference: Regina Tix. 1999. Continuous D-cones: convexity and powerdomain constructions. Ph.D. Dissertation. Darmstadt University of Technology, Germany. isbn:978-3-8265-6396-6 https://d-nb.info/957239157
– reference: Filippo Bonchi, Ana Sokolova, and Valeria Vignudelli. 2019. The Theory of Traces for Systems with Nondeterminism and Probability. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 1–14. https://doi.org/10.1109/lics.2019.8785673 10.1109/lics.2019.8785673
– reference: Regina Tix. 2000. Convex Power Constructions for Continuous D-Cones. Electronic Notes in Theoretical Computer Science, 35 (2000), 206–229. issn:1571-0661 https://doi.org/10.1016/S1571-0661(05)80746-7 Workshop on Domains IV. 10.1016/S1571-0661(05)80746-7
– reference: Dexter Kozen and Alexandra Silva. 2024. Multisets and Distributions. Springer Nature Switzerland, Cham. 168–187. isbn:978-3-031-61716-4 https://doi.org/10.1007/978-3-031-61716-4_11 10.1007/978-3-031-61716-4_11
– reference: Klaus Keimel and Gordon Plotkin. 2017. Mixed powerdomains for probability and nondeterminism. Logical Methods in Computer Science, Volume 13, Issue 1 (2017), Jan., https://doi.org/10.23638/LMCS-13(1:2)2017 10.23638/LMCS-13(1:2)2017
– reference: Carroll Morgan, Annabelle McIver, Karen Seidel, and J. W. Sanders. 1996. Refinement-oriented probability for CSP. Form. Asp. Comput., 8, 6 (1996), nov, 617–647. issn:0934-5043 https://doi.org/10.1007/bf01213492 10.1007/bf01213492
– reference: Roberto Segala and Nancy Lynch. 1994. Probabilistic simulations for probabilistic processes. In CONCUR ’94: Concurrency Theory, Bengt Jonsson and Joachim Parrow (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 481–496. isbn:978-3-540-48654-1 https://doi.org/10.1007/BFb0015027 10.1007/BFb0015027
– reference: Benjamin Lucien Kaminski. 2019. Advanced weakest precondition calculi for probabilistic programs. RWTH Aachen University. Aachen. https://doi.org/10.18154/RWTH-2019-01829 10.18154/RWTH-2019-01829
– ident: e_1_2_2_47_1
  doi: 10.1007/BFb0073967
– ident: e_1_2_2_9_1
  doi: 10.46298/lmcs-18(2:21)2022
– ident: e_1_2_2_5_1
  doi: 10.1007/BFb0083084
– ident: e_1_2_2_16_1
  doi: 10.1016/S1571-0661(05)82521-6
– ident: e_1_2_2_50_1
  doi: 10.1016/0022-0000(78)90048-X
– ident: e_1_2_2_24_1
  doi: 10.1016/j.entcs.2008.05.023
– ident: e_1_2_2_54_1
– ident: e_1_2_2_17_1
  doi: 10.1145/360933.360975
– ident: e_1_2_2_27_1
  doi: 10.1109/LICS.1989.39173
– volume-title: Automata, Languages and Programming
  ident: e_1_2_2_11_1
– ident: e_1_2_2_2_1
  doi: 10.1145/3674635
– volume-title: Advances in Computing Science — ASIAN’99
  ident: e_1_2_2_14_1
– ident: e_1_2_2_55_1
  doi: 10.1016/S1571-0661(05)80746-7
– ident: e_1_2_2_25_1
  doi: 10.1109/LICS52264.2021.9470678
– volume-title: Outcome Logic: A Unified Approach to the Metatheory of Program Logics with Branching Effects. arxiv:2401.04594.
  year: 2024
  ident: e_1_2_2_62_1
– ident: e_1_2_2_46_1
  doi: 10.1016/j.entcs.2015.12.021
– ident: e_1_2_2_15_1
– ident: e_1_2_2_40_1
  doi: 10.1016/j.entcs.2004.04.019
– ident: e_1_2_2_42_1
  doi: 10.1007/bf01213492
– ident: e_1_2_2_45_1
  doi: 10.1137/0205035
– ident: e_1_2_2_39_1
  doi: 10.1007/3-540-44618-4_26
– ident: e_1_2_2_43_1
  doi: 10.1016/j.tcs.2006.12.035
– ident: e_1_2_2_3_1
  doi: 10.1145/6490.6494
– start-page: 36
  year: 1951
  ident: e_1_2_2_60_1
  article-title: Various techniques used in connection with random digits. In Monte Carlo Method, A.S. Householder, G.E. Forsythe, and H.H. Germond (Eds.)
  publication-title: Government Printing Office.
– volume-title: A Discipline of Programming
  ident: e_1_2_2_18_1
– ident: e_1_2_2_67_1
  doi: 10.1109/lics.2019.8785707
– ident: e_1_2_2_23_1
  doi: 10.1016/J.JLAP.2011.04.005
– ident: e_1_2_2_7_1
  doi: 10.1109/lics.2019.8785673
– ident: e_1_2_2_58_1
– ident: e_1_2_2_56_1
  doi: 10.1016/j.entcs.2009.01.002
– ident: e_1_2_2_29_1
  doi: 10.18154/RWTH-2019-01829
– ident: e_1_2_2_44_1
– ident: e_1_2_2_52_1
– ident: e_1_2_2_59_1
  doi: 10.1017/S0960129505005074
– ident: e_1_2_2_63_1
  doi: 10.1145/3586045
– ident: e_1_2_2_66_1
– ident: e_1_2_2_36_1
  doi: 10.1007/b138392
– ident: e_1_2_2_38_1
  doi: 10.4230/LIPIcs.CONCUR.2020.28
– ident: e_1_2_2_37_1
  doi: 10.1145/3158121
– ident: e_1_2_2_41_1
  doi: 10.1145/229542.229547
– ident: e_1_2_2_22_1
  doi: 10.1145/363235.363259
– ident: e_1_2_2_30_1
  doi: 10.23638/LMCS-13(1:2)2017
– ident: e_1_2_2_6_1
  doi: 10.46298/lmcs-17(3:10)2021
– ident: e_1_2_2_35_1
  doi: 10.1016/S0304-3975(00)00208-5
– ident: e_1_2_2_32_1
  doi: 10.1145/256167.256195
– ident: e_1_2_2_57_1
  doi: 10.1109/LICS.2002.1029838
– ident: e_1_2_2_48_1
– ident: e_1_2_2_51_1
  doi: 10.1093/comjnl
– ident: e_1_2_2_65_1
  doi: 10.1145/3649821
– ident: e_1_2_2_26_1
– ident: e_1_2_2_53_1
  doi: 10.1145/3290377
– ident: e_1_2_2_21_1
  doi: 10.1016/S0167-6423(96)00019-6
– ident: e_1_2_2_64_1
– ident: e_1_2_2_19_1
  doi: 10.1145/3571223
– ident: e_1_2_2_34_1
  doi: 10.1007/BF00288637
– ident: e_1_2_2_28_1
  doi: 10.1145/2676726.2676980
– volume-title: Comparative semantics for a process language with probabilistic choice and non-determinism
  ident: e_1_2_2_13_1
– ident: e_1_2_2_61_1
  doi: 10.1145/3689740
– ident: e_1_2_2_49_1
  doi: 10.1007/BFb0015027
– ident: e_1_2_2_1_1
  doi: 10.1145/3571195
– ident: e_1_2_2_10_1
  doi: 10.1007/978-3-642-39799-8_34
– ident: e_1_2_2_12_1
  doi: 10.1145/3656437
– ident: e_1_2_2_33_1
  doi: 10.1007/978-3-031-61716-4_11
– ident: e_1_2_2_8_1
  doi: 10.4230/LIPIcs.CALCO.2021.11
– ident: e_1_2_2_4_1
  doi: 10.1007/978-3-319-89884-1_5
– ident: e_1_2_2_20_1
  doi: 10.1145/3310131
– ident: e_1_2_2_31_1
  doi: 10.1145/800061.808758
SSID ssj0001934839
Score 2.324606
Snippet Programs increasingly rely on randomization in applications such as cryptography and machine learning. Analyzing randomized programs has been a fruitful...
SourceID crossref
acm
SourceType Enrichment Source
Index Database
Publisher
StartPage 539
SubjectTerms Denotational semantics
Hoare logic
Probabilistic computation
Programming logic
Theory of computation
SubjectTermsDisplay Theory of computation -- Denotational semantics
Theory of computation -- Hoare logic
Theory of computation -- Probabilistic computation
Theory of computation -- Programming logic
Title A Demonic Outcome Logic for Randomized Nondeterminism
URI https://dl.acm.org/doi/10.1145/3704855
Volume 9
WOSCitedRecordID wos001470367300021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2475-1421
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001934839
  issn: 2475-1421
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECacNEOWpk1axOkDHIpsSqwHRXI0ghQdGsdoHCDoYvAlwIAlGY5iGBk65nf3KJGy6hRoO3QRbIKUbN7hu9Px7j6EPhEzYIpIFmSR4EFilAyYFmGQcaKYthxyoarJJuhoxO7u-LjXe_K1MKs5LQq2XvPFfxU1jIGwbensP4i7vSkMwGcQOlxB7HD9K8EPAUPymtfm-qGCBxhLywvfbD7hN1HoMp89gpc5KgvtUmF8F0Hno45bm1aneQwvruyJgkvkym1owQc5W3_8-8y2yrr3zJmjUuQtkpePHtnWnVTgm9l8JToVNsvWPEzAnRfLsmryDNwJRSc2EZE6NkE3EBYllARh0tRAn5nfjDkM5h1VG1-Pv3YglTTNjpx1Jg0Jz3PgT2yPjJgObLObjW3z5_lbJq9NRGzKssnULdxBLyJKuE0NvPrRidXxOGE1KV3745v6a7v23K217o3KO-5Nx0-ZvEIv3QsGHjaK8Rr1THGIDjx5B3ZYfoTIEDs9wU5PcK0nGPQEb_QE_6onb9Dt58vJxZfAcWgEIqK0CpQWqRgogFqeykxIqXRoQpEaSUVMY8UGimrKNU-0EExSe_AL_4ZqgH4daRq_RbtFWZhjhDMGL986zVRqNJjXjMlIJSoSoYxTk1HWR4ewAdNF0yXFb2kfnfoNmSrXdt6yn8ynW3vfR7id6O-xNeXkz1Peof2NIr5Hu9XywXxAe2pVze6XH2ux_gRWhnBv
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Demonic+Outcome+Logic+for+Randomized+Nondeterminism&rft.jtitle=Proceedings+of+ACM+on+programming+languages&rft.au=Zilberstein%2C+Noam&rft.au=Kozen%2C+Dexter&rft.au=Silva%2C+Alexandra&rft.au=Tassarotti%2C+Joseph&rft.date=2025-01-07&rft.issn=2475-1421&rft.eissn=2475-1421&rft.volume=9&rft.issue=POPL&rft.spage=539&rft.epage=568&rft_id=info:doi/10.1145%2F3704855&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3704855
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1421&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1421&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1421&client=summon