This is the moment for probabilistic loops
We present a novel static analysis technique to derive higher moments for program variables for a large class of probabilistic loops with potentially uncountable state spaces. Our approach is fully automatic, meaning it does not rely on externally provided invariants or templates. We employ algebrai...
Gespeichert in:
| Veröffentlicht in: | Proceedings of ACM on programming languages Jg. 6; H. OOPSLA2; S. 1497 - 1525 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY, USA
ACM
31.10.2022
|
| Schlagworte: | |
| ISSN: | 2475-1421, 2475-1421 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We present a novel static analysis technique to derive higher moments for program variables for a large class of probabilistic loops with potentially uncountable state spaces. Our approach is fully automatic, meaning it does not rely on externally provided invariants or templates. We employ algebraic techniques based on linear recurrences and introduce program transformations to simplify probabilistic programs while preserving their statistical properties. We develop power reduction techniques to further simplify the polynomial arithmetic of probabilistic programs and define the theory of moment-computable probabilistic loops for which higher moments can precisely be computed. Our work has applications towards recovering probability distributions of random variables and computing tail probabilities. The empirical evaluation of our results demonstrates the applicability of our work on many challenging examples. |
|---|---|
| AbstractList | We present a novel static analysis technique to derive higher moments for program variables for a large class of probabilistic loops with potentially uncountable state spaces. Our approach is fully automatic, meaning it does not rely on externally provided invariants or templates. We employ algebraic techniques based on linear recurrences and introduce program transformations to simplify probabilistic programs while preserving their statistical properties. We develop power reduction techniques to further simplify the polynomial arithmetic of probabilistic programs and define the theory of moment-computable probabilistic loops for which higher moments can precisely be computed. Our work has applications towards recovering probability distributions of random variables and computing tail probabilities. The empirical evaluation of our results demonstrates the applicability of our work on many challenging examples. |
| ArticleNumber | 178 |
| Author | Bartocci, Ezio Moosbrugger, Marcel Kovács, Laura Stankovič, Miroslav |
| Author_xml | – sequence: 1 givenname: Marcel orcidid: 0000-0002-2006-3741 surname: Moosbrugger fullname: Moosbrugger, Marcel email: marcel.moosbrugger@tuwien.ac.at organization: TU Wien, Austria – sequence: 2 givenname: Miroslav orcidid: 0000-0001-5978-7475 surname: Stankovič fullname: Stankovič, Miroslav email: miroslav.stankovic@tuwien.ac.at organization: TU Wien, Austria – sequence: 3 givenname: Ezio orcidid: 0000-0002-8004-6601 surname: Bartocci fullname: Bartocci, Ezio email: ezio.bartocci@tuwien.ac.at organization: TU Wien, Austria – sequence: 4 givenname: Laura orcidid: 0000-0002-8299-2714 surname: Kovács fullname: Kovács, Laura email: laura.kovacs@tuwien.ac.at organization: TU Wien, Austria |
| BookMark | eNptj81LAzEUxINUsNbi3dPeBGFtXpLdbI5S_IJCL_W8vKQJjexuliQX_3tXWkVEGHgD82Mec0lmQxgsIddA7wFEteJVzbmAMzJnQlYlCAazX_6CLFN6p5SC4qLhak7udgefikn5YIs-9HbIhQuxGGPQqH3nU_am6EIY0xU5d9gluzzdBXl7etytX8rN9vl1_bApkUmZS0XBYSOclQwVColOuukdtcBAirrRU6JtrZV0TjNjasUaqUGqPZhqzy1fkNtjr4khpWhdO0bfY_xogbZfK9vTyoks_5DGZ8w-DDmi7_7hb448mv6n9Dv8BF3OW8M |
| CitedBy_id | crossref_primary_10_1145_3632905 crossref_primary_10_1145_3704894 crossref_primary_10_1145_3704874 crossref_primary_10_1145_3728648 crossref_primary_10_1145_3586050 crossref_primary_10_1007_s10703_024_00455_0 crossref_primary_10_1145_3641545 crossref_primary_10_1145_3632872 crossref_primary_10_1145_3649822 crossref_primary_10_1145_3649844 |
| Cites_doi | 10.1007/978-3-030-81688-9_25 10.1038/261459a0 10.1007/978-3-319-46520-3_30 10.1007/978-3-7091-0445-3 10.1007/978-3-642-40196-1_17 10.1007/978-3-319-29604-3_5 10.1145/2491411.2491423 10.1145/3428208 10.1007/978-3-319-10936-7_6 10.3929/ETHZ-A-001631582 10.1145/3087604.3087623 10.1007/0-387-32227-2 10.1016/j.ic.2006.05.002 10.1007/s00165-012-0227-6 10.1145/3453483.3454062 10.1007/978-3-030-17465-1_8 10.1007/978-3-031-13185-1_3 10.1145/3158142 10.1145/3290368 10.1016/j.peva.2010.04.001 10.1145/3385412.3386035 10.1145/195613.195632 10.1063/1.5125097 10.1007/978-3-030-81688-9_27 10.1145/3385412 10.1007/978-3-662-49674-9_13 10.1007/978-3-662-49498-1 10.1145/1005285.1005324 10.1145/2103656.2103670 10.1007/978-3-540-78800-3_18 10.1007/978-3-319-41528-4_3 10.1007/978-3-319-63390-9 10.1007/978-3-319-41528-4_4 10.1038/nature14541 10.1007/978-3-030-64276-1 10.1109/FMCAD.2015.7542253 10.1007/978-3-319-68167-2_26 10.1007/978-3-642-15769-1_24 10.1017/9781108770750 10.1145/3453483.3454078 10.1016/j.tcs.2021.12.021 10.1007/b138392 10.1016/0022-0000(85)90012-1 10.1007/978-3-642-22110-1 10.1109/IROS45743.2020.9340755 10.1109/CDC.2015.7403319 10.1007/978-3-319-21690-4 10.1093/acprof:oso/9780199535255.001.0001 10.1016/0020-0190(90)90107-9 10.1017/cbo9780511814075 10.1007/978-3-319-73721-8_11 10.1017/9781108591034 10.1080/01621459.1965.10480775 10.1007/978-3-030-31784-3_15 10.2307/2334940 10.1007/s00236-018-0321-1 10.1007/978-3-642-31113-0 10.1007/978-3-030-45190-5_28 10.5281/zenodo.7055030 |
| ContentType | Journal Article |
| Copyright | Owner/Author |
| Copyright_xml | – notice: Owner/Author |
| DBID | AAYXX CITATION |
| DOI | 10.1145/3563341 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2475-1421 |
| EndPage | 1525 |
| ExternalDocumentID | 10_1145_3563341 3563341 |
| GrantInformation_xml | – fundername: Vienna Science and Technology Fund grantid: ICT19-018 funderid: http://dx.doi.org/10.13039/501100001821 – fundername: Austrian Science Fund grantid: W1255-N23 funderid: http://dx.doi.org/10.13039/501100002428 – fundername: European Research Council grantid: 101002685 funderid: http://dx.doi.org/10.13039/501100000781 |
| GroupedDBID | AAKMM AAYFX ACM ADPZR AIKLT ALMA_UNASSIGNED_HOLDINGS GUFHI LHSKQ M~E OK1 ROL AAYXX AEFXT AEJOY AKRVB CITATION |
| ID | FETCH-LOGICAL-a277t-901fa84fe72a9a47af7f1930e1217468bfe7be6b97ffb2cc69287b179d1c5d3e3 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001083750200055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2475-1421 |
| IngestDate | Sat Nov 29 07:46:47 EST 2025 Tue Nov 18 22:04:26 EST 2025 Mon Feb 24 21:14:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | OOPSLA2 |
| Keywords | Higher Moments Distribution Recovery Linear Recurrences Probabilistic Programs |
| Language | English |
| License | This work is licensed under a Creative Commons Attribution 4.0 International License. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a277t-901fa84fe72a9a47af7f1930e1217468bfe7be6b97ffb2cc69287b179d1c5d3e3 |
| ORCID | 0000-0002-8299-2714 0000-0002-2006-3741 0000-0002-8004-6601 0000-0001-5978-7475 |
| OpenAccessLink | https://dl.acm.org/doi/10.1145/3563341 |
| PageCount | 29 |
| ParticipantIDs | crossref_primary_10_1145_3563341 crossref_citationtrail_10_1145_3563341 acm_primary_3563341 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-31 |
| PublicationDateYYYYMMDD | 2022-10-31 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationPlace | New York, NY, USA |
| PublicationPlace_xml | – name: New York, NY, USA |
| PublicationTitle | Proceedings of ACM on programming languages |
| PublicationTitleAbbrev | ACM PACMPL |
| PublicationYear | 2022 |
| Publisher | ACM |
| Publisher_xml | – name: ACM |
| References | Guillaume Claret, Sriram K. Rajamani, Aditya V. Nori, Andrew D. Gordon, and Johannes Borgström. 2013. Bayesian Inference Using Data Flow Analysis. In Proc. of ESEC/FSE. https://doi.org/10.1145/2491411.2491423 10.1145/2491411.2491423 Zachary Kincaid, John Cyphert, Jason Breck, and T. Reps. 2018. Non-Linear Reasoning for Invariant Synthesis. In Proc. of POPL. https://doi.org/10.1145/3158142 10.1145/3158142 Feras A. Saad, Martin C. Rinard, and Vikash K. Mansinghka. 2021. SPPL: Probabilistic Programming With Fast Exact Symbolic Inference. In Proc. of PLDI. https://doi.org/10.1145/3453483.3454078 10.1145/3453483.3454078 Dominik Gruntz. 1996. On Computing Limits in a Symbolic Manipulation System. Ph. D. Dissertation. ETH Zürich. https://doi.org/10.3929/ETHZ-A-001631582 10.3929/ETHZ-A-001631582 Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Ehsan Kafshdar Goharshady. 2020. Polynomial Invariant Generation for Non-deterministic Recursive Programs. In Proc. of PLDI. https://doi.org/10.1145/3385412 10.1145/3385412 Manuel Kauers and Peter Paule. 2011. The Concrete Tetrahedron - Symbolic Sums, Recurrence Equations, Generating Functions, Asymptotic Estimates. Springer. https://doi.org/10.1007/978-3-7091-0445-3 10.1007/978-3-7091-0445-3 Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Algorithms. Cambridge University Press. https://doi.org/10.1017/cbo9780511814075 10.1017/cbo9780511814075 Zachary Kincaid, Jason Breck, John Cyphert, and T. Reps. 2019. Closed Forms for Numerical Loops. In Proc. of POPL. https://doi.org/10.1145/3290368 10.1145/3290368 Praveena Narayanan, Jacques Carette, Wren Romano, Chung chieh Shan, and Robert Zinkov. 2016. Probabilistic Inference by Program Transformation in Hakaru (System Description). In Proc. of FLOPS. https://doi.org/10.1007/978-3-319-29604-3_5 10.1007/978-3-319-29604-3_5 Gilles Barthe, Thomas Espitau, Luis María Ferrer Fioriti, and Justin Hsu. 2016. Synthesizing Probabilistic Invariants via Doob’s Decomposition. In Proc. of CAV. https://doi.org/10.1007/978-3-319-41528-4_3 10.1007/978-3-319-41528-4_3 Yi Chou, Hansol Yoon, and Sriram Sankaranarayanan. 2020. Predictive Runtime Monitoring of Vehicle Models Using Bayesian Estimation and Reachability Analysis. In Proc. of IROS. https://doi.org/10.1109/IROS45743.2020.9340755 10.1109/IROS45743.2020.9340755 Konstantin Selyunin, Denise Ratasich, Ezio Bartocci, Md. Ariful Islam, Scott A. Smolka, and Radu Grosu. 2015. Neural Programming: Towards Adaptive Control in Cyber-Physical Systems. In Proc. of CDC. https://doi.org/10.1109/CDC.2015.7403319 10.1109/CDC.2015.7403319 Steven de Oliveira, Saddek Bensalem, and Virgile Prevosto. 2016. Polynomial Invariants by Linear Algebra. In Proc. of ATVA. https://doi.org/10.1007/978-3-319-46520-3_30 10.1007/978-3-319-46520-3_30 Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. 2020. Analysis of Bayesian Networks via Prob-Solvable Loops. In Proc. of ICTAC. https://doi.org/10.1007/978-3-030-64276-1 10.1007/978-3-030-64276-1 Steven Holtzen, Guy Van den Broeck, and Todd D. Millstein. 2020. Scaling Exact Inference for Discrete Probabilistic Programs. In Proc. of OOPSLA. https://doi.org/10.1145/3428208 10.1145/3428208 Andreas Humenberger, Maximilian Jaroschek, and Laura Kovács. 2017. Automated Generation of Non-Linear Loop Invariants Utilizing Hypergeometric Sequences. In Proc. of ISSAC. https://doi.org/10.1145/3087604.3087623 10.1145/3087604.3087623 Wilfred K. Hastings. 1970. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika, https://doi.org/10.2307/2334940 10.2307/2334940 Steven Holtzen, Sebastian Junges, Marcell Vazquez-Chanlatte, Todd D. Millstein, Sanjit A. Seshia, and Guy Van den Broeck. 2021. Model Checking Finite-Horizon Markov Chains with Probabilistic Inference. In Proc. of CAV. https://doi.org/10.1007/978-3-030-81688-9_27 10.1007/978-3-030-81688-9_27 Annabelle McIver and Carroll Morgan. 2005. Abstraction, Refinement and Proof for Probabilistic Systems. Springer. https://doi.org/10.1007/b138392 10.1007/b138392 Stanley L. Warner. 1965. Randomized Response: A Survey Technique for Eliminating Evasive Answer Bias. J. Am. Stat. Assoc., https://doi.org/10.1080/01621459.1965.10480775 10.1080/01621459.1965.10480775 Azadeh Farzan and Zachary Kincaid. 2015. Compositional Recurrence Analysis. In Proc. of FMCAD. https://doi.org/10.1109/FMCAD.2015.7542253 10.1109/FMCAD.2015.7542253 Jason Breck, John Cyphert, Zachary Kincaid, and Thomas W. Reps. 2020. Templates and Recurrences: Better Together. In Proc. of PLDI. https://doi.org/10.1145/3385412.3386035 10.1145/3385412.3386035 Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. 2017. A Storm is Coming: A Modern Probabilistic Model Checker. In Proc. of CAV. https://doi.org/10.1007/978-3-319-63390-9 10.1007/978-3-319-63390-9 Kevin Batz, Mingshuai Chen, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Philipp Schröer. 2021. Latticed k-Induction with an Application to Probabilistic Programs. In Proc. of CAV. https://doi.org/10.1007/978-3-030-81688-9_25 10.1007/978-3-030-81688-9_25 Håkan L. S. Younes and Reid G. Simmons. 2006. Statistical probabilistic model checking with a focus on time-bounded properties. Inf. Comput., https://doi.org/10.1016/j.ic.2006.05.002 10.1016/j.ic.2006.05.002 Olivier Bouissou, Eric Goubault, Sylvie Putot, Aleksandar Chakarov, and Sriram Sankaranarayanan. 2016. Uncertainty Propagation Using Probabilistic Affine Forms and Concentration of Measure Inequalities. In Proc. of TACAS. https://doi.org/10.1007/978-3-662-49674-9_13 10.1007/978-3-662-49674-9_13 Richard M. Karp. 1994. Probabilistic Recurrence Relations. J. ACM, https://doi.org/10.1145/195613.195632 10.1145/195613.195632 Milton F. Maritz. 2020. A Note on Exact Solutions of the Logistic Map. Chaos: An Interdisciplinary Journal of Nonlinear Science, https://doi.org/10.1063/1.5125097 10.1063/1.5125097 Joost-Pieter Katoen, Annabelle McIver, Larissa Meinicke, and Carroll C. Morgan. 2010. Linear-Invariant Generation for Probabilistic Programs: Automated Support for Proof-Based Methods. In Proc. of SAS. https://doi.org/10.1007/978-3-642-15769-1_24 10.1007/978-3-642-15769-1_24 Aleksandar Chakarov and Sriram Sankaranarayanan. 2014. Expectation Invariants for Probabilistic Program Loops as Fixed Points. In Proc. of SAS. https://doi.org/10.1007/978-3-319-10936-7_6 10.1007/978-3-319-10936-7_6 Dexter Kozen. 1985. A Probabilistic PDL. J. Comput. System Sci., https://doi.org/10.1016/0022-0000(85)90012-1 10.1016/0022-0000(85)90012-1 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Verification of Probabilistic Real-Time Systems. In Proc. of CAV. https://doi.org/10.1007/978-3-642-22110-1 10.1007/978-3-642-22110-1 Marcel Moosbrugger, Miroslav Stankovič, Ezio Bartocci, and Laura Kovács. 2022. This is the Moment for Probabilistic Loops - Artifact (Polar). https://doi.org/10.5281/zenodo.7055030 10.5281/zenodo.7055030 Yu-Fang Chen, Chih-Duo Hong, Bow-Yaw Wang, and Lijun Zhang. 2015. Counterexample-Guided Polynomial Loop Invariant Generation by Lagrange Interpolation. In Proc. of CAV. https://doi.org/10.1007/978-3-319-21690-4 10.1007/978-3-319-21690-4 Rick Durrett. 2019. Probability: Theory and Examples. Cambridge University Press. https://doi.org/10.1017/9781108591034 10.1017/9781108591034 Timon Gehr, Sasa Misailovic, and Martin T. Vechev. 2016. PSI: Exact Symbolic Inference for Probabilistic Programs. In Proc. of CAV. https://doi.org/10.1007/978-3-319-41528-4_4 10.1007/978-3-319-41528-4_4 Laura Kovács. 2008. Reasoning Algebraically About P-Solvable Loops. In Proc. of TACAS. https://doi.org/10.1007/978-3-540-78800-3_18 10.1007/978-3-540-78800-3_18 Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. 2012. Probabilistic Relational Reasoning for Differential Privacy. In Proc. of POPL. https://doi.org/10.1145/2103656.2103670 10.1145/2103656.2103670 John E. Kolassa. 2006. Series Approximation Methods in Statistics. Springer. https://doi.org/10.1007/0-387-32227-2 10.1007/0-387-32227-2 Miroslav Stankovic, Ezio Bartocci, and Laura Kovács. 2022. Moment-Based Analysis of Bayesian Network Properties. Theor. Comput. Sci., https://doi.org/10.1016/j.tcs.2021.12.021 10.1016/j.tcs.2021.12.021 Di Wang, Jan Hoffmann, and Thomas Reps. 2021. Central Moment Analysis for Cost Accumulators in Probabilistic Programs. In Proc. of PLDI. https://doi.org/10.1145/3453483.3454062 10.1145/3453483.3454062 Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva. 2020. Foundations of Probabilistic Programming. Cambridge University Press. https://doi.org/10.1017/9781108770750 10.1017/9781108770750 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2012. Probabilistic Verification of Herman’s Self-Stabilisation Algorithm. Formal Aspects of Computing, https://doi.org/10.1007/s00165-012-0227-6 10.1007/s00165-012-0227-6 Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT Press. ISBN 978-0-262-02649-9 Enric Rodríguez-carbonell and Deepak Kapur. 2004. Automatic Generation of Polynomial Loop Invariants: Algebraic Foundations. In Proc. of ISSAC. https://doi.org/10.1145/1005285.1005324 10.1145/1005285.1005324 Yijun Feng, Lijun Zhang, David N. Jansen, Naijun Zhan, and Bican Xia. 2017. Finding Polynomial Loop Invariants for Probabilistic Programs. In Proc. of ATVA. https://doi.org/10.1007/978-3-319-68167-2_26 10.1007/978-3-319-68167-2_26 Andreas Humenberger, Maximilian Jaroschek, and Laura Kovács. 2018. Invariant Generation for Multi-Path Loops with Polynomial Assignments. In Proc. of VMCAI. https://doi.org/10.1007/978-3-319-73721-8_11 10.1007/978-3-319-73721-8_11 Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. 2020. Mora - Automatic Generation of Moment-Based Invariants. In Proc. of TACAS. https://doi.org/10.1007/978-3-030-45190-5_28 10.1007/978-3-030-45190-5_28 Jialu Bao, Nitesh Trivedi, Drashti Pathak, Justin Hsu, and Subhajit Roy. 2022. Data-Driven Invariant Learning for Probabilistic Programs. In Proc. of CAV. https://d e_1_2_1_60_1 e_1_2_1_20_1 e_1_2_1_41_1 e_1_2_1_24_1 e_1_2_1_45_1 e_1_2_1_22_1 e_1_2_1_43_1 e_1_2_1_28_1 e_1_2_1_49_1 e_1_2_1_26_1 e_1_2_1_47_1 e_1_2_1_31_1 e_1_2_1_54_1 e_1_2_1_8_1 e_1_2_1_56_1 e_1_2_1_6_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_50_1 e_1_2_1_4_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_52_1 e_1_2_1_2_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_14_1 e_1_2_1_37_1 e_1_2_1_58_1 e_1_2_1_18_1 e_1_2_1_42_1 e_1_2_1_40_1 e_1_2_1_23_1 e_1_2_1_46_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_27_1 e_1_2_1_25_1 e_1_2_1_48_1 e_1_2_1_29_1 Baier Christel (e_1_2_1_1_1) e_1_2_1_7_1 e_1_2_1_30_1 e_1_2_1_55_1 e_1_2_1_5_1 e_1_2_1_57_1 e_1_2_1_3_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_51_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_53_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_15_1 e_1_2_1_36_1 e_1_2_1_59_1 e_1_2_1_9_1 e_1_2_1_19_1 |
| References_xml | – reference: Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2012. Probabilistic Verification of Herman’s Self-Stabilisation Algorithm. Formal Aspects of Computing, https://doi.org/10.1007/s00165-012-0227-6 10.1007/s00165-012-0227-6 – reference: Zoubin Ghahramani. 2015. Probabilistic Machine Learning and Artificial Intelligence. Nature, https://doi.org/10.1038/nature14541 10.1038/nature14541 – reference: Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Ehsan Kafshdar Goharshady. 2020. Polynomial Invariant Generation for Non-deterministic Recursive Programs. In Proc. of PLDI. https://doi.org/10.1145/3385412 10.1145/3385412 – reference: Zachary Kincaid, John Cyphert, Jason Breck, and T. Reps. 2018. Non-Linear Reasoning for Invariant Synthesis. In Proc. of POPL. https://doi.org/10.1145/3158142 10.1145/3158142 – reference: Annabelle McIver and Carroll Morgan. 2005. Abstraction, Refinement and Proof for Probabilistic Systems. Springer. https://doi.org/10.1007/b138392 10.1007/b138392 – reference: Steven Holtzen, Sebastian Junges, Marcell Vazquez-Chanlatte, Todd D. Millstein, Sanjit A. Seshia, and Guy Van den Broeck. 2021. Model Checking Finite-Horizon Markov Chains with Probabilistic Inference. In Proc. of CAV. https://doi.org/10.1007/978-3-030-81688-9_27 10.1007/978-3-030-81688-9_27 – reference: Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva. 2020. Foundations of Probabilistic Programming. Cambridge University Press. https://doi.org/10.1017/9781108770750 10.1017/9781108770750 – reference: Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. 2013. Concentration Inequalities - A Nonasymptotic Theory of Independence. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199535255.001.0001 10.1093/acprof:oso/9780199535255.001.0001 – reference: Di Wang, Jan Hoffmann, and Thomas Reps. 2021. Central Moment Analysis for Cost Accumulators in Probabilistic Programs. In Proc. of PLDI. https://doi.org/10.1145/3453483.3454062 10.1145/3453483.3454062 – reference: Yi Chou, Hansol Yoon, and Sriram Sankaranarayanan. 2020. Predictive Runtime Monitoring of Vehicle Models Using Bayesian Estimation and Reachability Analysis. In Proc. of IROS. https://doi.org/10.1109/IROS45743.2020.9340755 10.1109/IROS45743.2020.9340755 – reference: Milton F. Maritz. 2020. A Note on Exact Solutions of the Logistic Map. Chaos: An Interdisciplinary Journal of Nonlinear Science, https://doi.org/10.1063/1.5125097 10.1063/1.5125097 – reference: Marcel Moosbrugger, Miroslav Stankovič, Ezio Bartocci, and Laura Kovács. 2022. This is the Moment for Probabilistic Loops - Artifact (Polar). https://doi.org/10.5281/zenodo.7055030 10.5281/zenodo.7055030 – reference: Timon Gehr, Sasa Misailovic, and Martin T. Vechev. 2016. PSI: Exact Symbolic Inference for Probabilistic Programs. In Proc. of CAV. https://doi.org/10.1007/978-3-319-41528-4_4 10.1007/978-3-319-41528-4_4 – reference: Azadeh Farzan and Zachary Kincaid. 2015. Compositional Recurrence Analysis. In Proc. of FMCAD. https://doi.org/10.1109/FMCAD.2015.7542253 10.1109/FMCAD.2015.7542253 – reference: Håkan L. S. Younes and Reid G. Simmons. 2006. Statistical probabilistic model checking with a focus on time-bounded properties. Inf. Comput., https://doi.org/10.1016/j.ic.2006.05.002 10.1016/j.ic.2006.05.002 – reference: Joost-Pieter Katoen, Annabelle McIver, Larissa Meinicke, and Carroll C. Morgan. 2010. Linear-Invariant Generation for Probabilistic Programs: Automated Support for Proof-Based Methods. In Proc. of SAS. https://doi.org/10.1007/978-3-642-15769-1_24 10.1007/978-3-642-15769-1_24 – reference: Yijun Feng, Lijun Zhang, David N. Jansen, Naijun Zhan, and Bican Xia. 2017. Finding Polynomial Loop Invariants for Probabilistic Programs. In Proc. of ATVA. https://doi.org/10.1007/978-3-319-68167-2_26 10.1007/978-3-319-68167-2_26 – reference: Steven Holtzen, Guy Van den Broeck, and Todd D. Millstein. 2020. Scaling Exact Inference for Discrete Probabilistic Programs. In Proc. of OOPSLA. https://doi.org/10.1145/3428208 10.1145/3428208 – reference: Friedrich Gretz, Joost-Pieter Katoen, and Annabelle McIver. 2013. Prinsys - On a Quest for Probabilistic Loop Invariants. In Proc. of QEST. https://doi.org/10.1007/978-3-642-40196-1_17 10.1007/978-3-642-40196-1_17 – reference: Andreas Humenberger, Maximilian Jaroschek, and Laura Kovács. 2017. Automated Generation of Non-Linear Loop Invariants Utilizing Hypergeometric Sequences. In Proc. of ISSAC. https://doi.org/10.1145/3087604.3087623 10.1145/3087604.3087623 – reference: Steven de Oliveira, Saddek Bensalem, and Virgile Prevosto. 2016. Polynomial Invariants by Linear Algebra. In Proc. of ATVA. https://doi.org/10.1007/978-3-319-46520-3_30 10.1007/978-3-319-46520-3_30 – reference: Jialu Bao, Nitesh Trivedi, Drashti Pathak, Justin Hsu, and Subhajit Roy. 2022. Data-Driven Invariant Learning for Probabilistic Programs. In Proc. of CAV. https://doi.org/10.1007/978-3-031-13185-1_3 10.1007/978-3-031-13185-1_3 – reference: Dominik Gruntz. 1996. On Computing Limits in a Symbolic Manipulation System. Ph. D. Dissertation. ETH Zürich. https://doi.org/10.3929/ETHZ-A-001631582 10.3929/ETHZ-A-001631582 – reference: Robert M. May. 1976. Simple Mathematical Models With Very Complicated Dynamics. Nature, https://doi.org/10.1038/261459a0 10.1038/261459a0 – reference: John E. Kolassa. 2006. Series Approximation Methods in Statistics. Springer. https://doi.org/10.1007/0-387-32227-2 10.1007/0-387-32227-2 – reference: Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Algorithms. Cambridge University Press. https://doi.org/10.1017/cbo9780511814075 10.1017/cbo9780511814075 – reference: Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2019. On the Hardness of Analyzing Probabilistic Programs. Acta Informatica, https://doi.org/10.1007/s00236-018-0321-1 10.1007/s00236-018-0321-1 – reference: Wilfred K. Hastings. 1970. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika, https://doi.org/10.2307/2334940 10.2307/2334940 – reference: Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. 2020. Analysis of Bayesian Networks via Prob-Solvable Loops. In Proc. of ICTAC. https://doi.org/10.1007/978-3-030-64276-1 10.1007/978-3-030-64276-1 – reference: Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT Press. ISBN 978-0-262-02649-9 – reference: Jason Breck, John Cyphert, Zachary Kincaid, and Thomas W. Reps. 2020. Templates and Recurrences: Better Together. In Proc. of PLDI. https://doi.org/10.1145/3385412.3386035 10.1145/3385412.3386035 – reference: Praveena Narayanan, Jacques Carette, Wren Romano, Chung chieh Shan, and Robert Zinkov. 2016. Probabilistic Inference by Program Transformation in Hakaru (System Description). In Proc. of FLOPS. https://doi.org/10.1007/978-3-319-29604-3_5 10.1007/978-3-319-29604-3_5 – reference: Feras A. Saad, Martin C. Rinard, and Vikash K. Mansinghka. 2021. SPPL: Probabilistic Programming With Fast Exact Symbolic Inference. In Proc. of PLDI. https://doi.org/10.1145/3453483.3454078 10.1145/3453483.3454078 – reference: Manuel Kauers and Peter Paule. 2011. The Concrete Tetrahedron - Symbolic Sums, Recurrence Equations, Generating Functions, Asymptotic Estimates. Springer. https://doi.org/10.1007/978-3-7091-0445-3 10.1007/978-3-7091-0445-3 – reference: Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2016. Weakest Precondition Reasoning for Expected Run-Times of Probabilistic Programs. In Proc. of ESOP. https://doi.org/10.1007/978-3-662-49498-1 10.1007/978-3-662-49498-1 – reference: Dexter Kozen. 1985. A Probabilistic PDL. J. Comput. System Sci., https://doi.org/10.1016/0022-0000(85)90012-1 10.1016/0022-0000(85)90012-1 – reference: Andreas Humenberger, Maximilian Jaroschek, and Laura Kovács. 2018. Invariant Generation for Multi-Path Loops with Polynomial Assignments. In Proc. of VMCAI. https://doi.org/10.1007/978-3-319-73721-8_11 10.1007/978-3-319-73721-8_11 – reference: Miroslav Stankovic, Ezio Bartocci, and Laura Kovács. 2022. Moment-Based Analysis of Bayesian Network Properties. Theor. Comput. Sci., https://doi.org/10.1016/j.tcs.2021.12.021 10.1016/j.tcs.2021.12.021 – reference: Stanley L. Warner. 1965. Randomized Response: A Survey Technique for Eliminating Evasive Answer Bias. J. Am. Stat. Assoc., https://doi.org/10.1080/01621459.1965.10480775 10.1080/01621459.1965.10480775 – reference: Satoshi Kura, Natsuki Urabe, and Ichiro Hasuo. 2019. Tail Probabilities for Randomized Program Runtimes via Martingales for Higher Moments. In Proc. of TACAS. https://doi.org/10.1007/978-3-030-17465-1_8 10.1007/978-3-030-17465-1_8 – reference: Enric Rodríguez-carbonell and Deepak Kapur. 2004. Automatic Generation of Polynomial Loop Invariants: Algebraic Foundations. In Proc. of ISSAC. https://doi.org/10.1145/1005285.1005324 10.1145/1005285.1005324 – reference: Kevin Batz, Mingshuai Chen, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Philipp Schröer. 2021. Latticed k-Induction with an Application to Probabilistic Programs. In Proc. of CAV. https://doi.org/10.1007/978-3-030-81688-9_25 10.1007/978-3-030-81688-9_25 – reference: Zachary Kincaid, Jason Breck, John Cyphert, and T. Reps. 2019. Closed Forms for Numerical Loops. In Proc. of POPL. https://doi.org/10.1145/3290368 10.1145/3290368 – reference: Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger Hermanns, and David N. Jansen. 2011. The Ins and Outs of the Probabilistic Model Checker MRMC. Perform. Eval., https://doi.org/10.1016/j.peva.2010.04.001 10.1016/j.peva.2010.04.001 – reference: Guillaume Claret, Sriram K. Rajamani, Aditya V. Nori, Andrew D. Gordon, and Johannes Borgström. 2013. Bayesian Inference Using Data Flow Analysis. In Proc. of ESEC/FSE. https://doi.org/10.1145/2491411.2491423 10.1145/2491411.2491423 – reference: Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. 2019. Automatic Generation of Moment-Based Invariants for Prob-Solvable Loops. In Proc. of ATVA. https://doi.org/10.1007/978-3-030-31784-3_15 10.1007/978-3-030-31784-3_15 – reference: Konstantin Selyunin, Denise Ratasich, Ezio Bartocci, Md. Ariful Islam, Scott A. Smolka, and Radu Grosu. 2015. Neural Programming: Towards Adaptive Control in Cyber-Physical Systems. In Proc. of CDC. https://doi.org/10.1109/CDC.2015.7403319 10.1109/CDC.2015.7403319 – reference: Laura Kovács. 2008. Reasoning Algebraically About P-Solvable Loops. In Proc. of TACAS. https://doi.org/10.1007/978-3-540-78800-3_18 10.1007/978-3-540-78800-3_18 – reference: Olivier Bouissou, Eric Goubault, Sylvie Putot, Aleksandar Chakarov, and Sriram Sankaranarayanan. 2016. Uncertainty Propagation Using Probabilistic Affine Forms and Concentration of Measure Inequalities. In Proc. of TACAS. https://doi.org/10.1007/978-3-662-49674-9_13 10.1007/978-3-662-49674-9_13 – reference: Yu-Fang Chen, Chih-Duo Hong, Bow-Yaw Wang, and Lijun Zhang. 2015. Counterexample-Guided Polynomial Loop Invariant Generation by Lagrange Interpolation. In Proc. of CAV. https://doi.org/10.1007/978-3-319-21690-4 10.1007/978-3-319-21690-4 – reference: Rick Durrett. 2019. Probability: Theory and Examples. Cambridge University Press. https://doi.org/10.1017/9781108591034 10.1017/9781108591034 – reference: Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. 2017. A Storm is Coming: A Modern Probabilistic Model Checker. In Proc. of CAV. https://doi.org/10.1007/978-3-319-63390-9 10.1007/978-3-319-63390-9 – reference: Richard M. Karp. 1994. Probabilistic Recurrence Relations. J. ACM, https://doi.org/10.1145/195613.195632 10.1145/195613.195632 – reference: Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. 2020. Mora - Automatic Generation of Moment-Based Invariants. In Proc. of TACAS. https://doi.org/10.1007/978-3-030-45190-5_28 10.1007/978-3-030-45190-5_28 – reference: Aleksandar Chakarov and Sriram Sankaranarayanan. 2014. Expectation Invariants for Probabilistic Program Loops as Fixed Points. In Proc. of SAS. https://doi.org/10.1007/978-3-319-10936-7_6 10.1007/978-3-319-10936-7_6 – reference: Ted Herman. 1990. Probabilistic Self-Stabilization. Inform. Process. Lett., https://doi.org/10.1016/0020-0190(90)90107-9 10.1016/0020-0190(90)90107-9 – reference: Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. 2012. Probabilistic Relational Reasoning for Differential Privacy. In Proc. of POPL. https://doi.org/10.1145/2103656.2103670 10.1145/2103656.2103670 – reference: Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Verification of Probabilistic Real-Time Systems. In Proc. of CAV. https://doi.org/10.1007/978-3-642-22110-1 10.1007/978-3-642-22110-1 – reference: Gilles Barthe, Thomas Espitau, Luis María Ferrer Fioriti, and Justin Hsu. 2016. Synthesizing Probabilistic Invariants via Doob’s Decomposition. In Proc. of CAV. https://doi.org/10.1007/978-3-319-41528-4_3 10.1007/978-3-319-41528-4_3 – reference: Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2012. Probabilistic Relational Hoare Logics for Computer-Aided Security Proofs. In Proc. of MPC. https://doi.org/10.1007/978-3-642-31113-0 10.1007/978-3-642-31113-0 – ident: e_1_2_1_10_1 doi: 10.1007/978-3-030-81688-9_25 – ident: e_1_2_1_49_1 doi: 10.1038/261459a0 – ident: e_1_2_1_19_1 doi: 10.1007/978-3-319-46520-3_30 – ident: e_1_2_1_39_1 doi: 10.1007/978-3-7091-0445-3 – ident: e_1_2_1_26_1 doi: 10.1007/978-3-642-40196-1_17 – ident: e_1_2_1_53_1 doi: 10.1007/978-3-319-29604-3_5 – ident: e_1_2_1_18_1 doi: 10.1145/2491411.2491423 – ident: e_1_2_1_30_1 doi: 10.1145/3428208 – ident: e_1_2_1_14_1 doi: 10.1007/978-3-319-10936-7_6 – ident: e_1_2_1_27_1 doi: 10.3929/ETHZ-A-001631582 – ident: e_1_2_1_32_1 doi: 10.1145/3087604.3087623 – ident: e_1_2_1_42_1 doi: 10.1007/0-387-32227-2 – ident: e_1_2_1_60_1 doi: 10.1016/j.ic.2006.05.002 – ident: e_1_2_1_47_1 doi: 10.1007/s00165-012-0227-6 – ident: e_1_2_1_58_1 doi: 10.1145/3453483.3454062 – ident: e_1_2_1_45_1 doi: 10.1007/978-3-030-17465-1_8 – ident: e_1_2_1_2_1 doi: 10.1007/978-3-031-13185-1_3 – ident: e_1_2_1_41_1 doi: 10.1145/3158142 – ident: e_1_2_1_40_1 doi: 10.1145/3290368 – ident: e_1_2_1_38_1 doi: 10.1016/j.peva.2010.04.001 – volume-title: Principles of model checking ident: e_1_2_1_1_1 – ident: e_1_2_1_13_1 doi: 10.1145/3385412.3386035 – ident: e_1_2_1_36_1 doi: 10.1145/195613.195632 – ident: e_1_2_1_48_1 doi: 10.1063/1.5125097 – ident: e_1_2_1_31_1 doi: 10.1007/978-3-030-81688-9_27 – ident: e_1_2_1_15_1 doi: 10.1145/3385412 – ident: e_1_2_1_12_1 doi: 10.1007/978-3-662-49674-9_13 – ident: e_1_2_1_35_1 doi: 10.1007/978-3-662-49498-1 – ident: e_1_2_1_54_1 doi: 10.1145/1005285.1005324 – ident: e_1_2_1_6_1 doi: 10.1145/2103656.2103670 – ident: e_1_2_1_43_1 doi: 10.1007/978-3-540-78800-3_18 – ident: e_1_2_1_3_1 doi: 10.1007/978-3-319-41528-4_3 – ident: e_1_2_1_20_1 doi: 10.1007/978-3-319-63390-9 – ident: e_1_2_1_24_1 doi: 10.1007/978-3-319-41528-4_4 – ident: e_1_2_1_25_1 doi: 10.1038/nature14541 – ident: e_1_2_1_8_1 doi: 10.1007/978-3-030-64276-1 – ident: e_1_2_1_22_1 doi: 10.1109/FMCAD.2015.7542253 – ident: e_1_2_1_23_1 doi: 10.1007/978-3-319-68167-2_26 – ident: e_1_2_1_37_1 doi: 10.1007/978-3-642-15769-1_24 – ident: e_1_2_1_5_1 doi: 10.1017/9781108770750 – ident: e_1_2_1_55_1 doi: 10.1145/3453483.3454078 – ident: e_1_2_1_57_1 doi: 10.1016/j.tcs.2021.12.021 – ident: e_1_2_1_50_1 doi: 10.1007/b138392 – ident: e_1_2_1_44_1 doi: 10.1016/0022-0000(85)90012-1 – ident: e_1_2_1_46_1 doi: 10.1007/978-3-642-22110-1 – ident: e_1_2_1_17_1 doi: 10.1109/IROS45743.2020.9340755 – ident: e_1_2_1_56_1 doi: 10.1109/CDC.2015.7403319 – ident: e_1_2_1_16_1 doi: 10.1007/978-3-319-21690-4 – ident: e_1_2_1_11_1 doi: 10.1093/acprof:oso/9780199535255.001.0001 – ident: e_1_2_1_29_1 doi: 10.1016/0020-0190(90)90107-9 – ident: e_1_2_1_52_1 doi: 10.1017/cbo9780511814075 – ident: e_1_2_1_33_1 doi: 10.1007/978-3-319-73721-8_11 – ident: e_1_2_1_21_1 doi: 10.1017/9781108591034 – ident: e_1_2_1_59_1 doi: 10.1080/01621459.1965.10480775 – ident: e_1_2_1_7_1 doi: 10.1007/978-3-030-31784-3_15 – ident: e_1_2_1_28_1 doi: 10.2307/2334940 – ident: e_1_2_1_34_1 doi: 10.1007/s00236-018-0321-1 – ident: e_1_2_1_4_1 doi: 10.1007/978-3-642-31113-0 – ident: e_1_2_1_9_1 doi: 10.1007/978-3-030-45190-5_28 – ident: e_1_2_1_51_1 doi: 10.5281/zenodo.7055030 |
| SSID | ssj0001934839 |
| Score | 2.4070253 |
| Snippet | We present a novel static analysis technique to derive higher moments for program variables for a large class of probabilistic loops with potentially... |
| SourceID | crossref acm |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1497 |
| SubjectTerms | Computing methodologies Markov processes Mathematics of computing Random walks and Markov chains Symbolic and algebraic algorithms Theory of computation |
| SubjectTermsDisplay | Computing methodologies -- Symbolic and algebraic algorithms Mathematics of computing -- Markov processes Theory of computation -- Random walks and Markov chains |
| Title | This is the moment for probabilistic loops |
| URI | https://dl.acm.org/doi/10.1145/3563341 |
| Volume | 6 |
| WOSCitedRecordID | wos001083750200055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2475-1421 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001934839 issn: 2475-1421 databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWgcOBCoYAoLSgHxAEUkQ_Hjo-rtohDt12Jgnpb2Y5drbqbrDbbVcWB386M7WRD1QMckKIoSkbeTZ41nhm_mSHkPawpVZawKqZM25gKmcel5SZONStUYniVu2YwP0752Vl5eSkmgavaunYCvK7L21ux_K9Qwz0AG1Nn_wHuflC4AdcAOpwBdjj_JfCzFtuUo0W5aNxeP1IJsXOMq6aLhZk_zZtm2Q4N00m_kDlux-hojNsIgb21wHhCF9nsjfBx07RqdXN15VEfY9Zkz9fA7sTXzWbmjNVjT9CHBXkuN9vY6WrdaO3YBCc_PR3MJ-Fs3O596hlMmLgth7EJcGu3St3PpsB3d_oso7yIU-oTojvlywZz7Px88u10lA3UKbhvfLA0Y6-m-9U-xQoZecHy3JfRulNDOzx5SB5lvBCov8e_BqE4kVOwE31KNY71OcijxaIXA4tlYHpcPCNPg88QjTzWz8kDU--R3a4fRxTU8wvyEaGP4ADoIw99BNBHf0AfOehfku9fTi6OvsahF0YsM87XyKKxsqTW8EwKSbm03ML_TkyKPiUrFTxRhinBrVWZ1kyAK6xA21apLqrc5K_ITt3U5jWJNGe2MjYpRSYpvGUJ4ipV3CZMSMbkPtmDt54ufbWTafgW--RD9xWmOpSPxy4m86lPbS-2glEv2I1xR-TNvb9wQJ5s59Ah2Vmvbsxb8lhv1rN29c5B9huAE1lM |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=This+is+the+moment+for+probabilistic+loops&rft.jtitle=Proceedings+of+ACM+on+programming+languages&rft.au=Moosbrugger%2C+Marcel&rft.au=Stankovi%C4%8D%2C+Miroslav&rft.au=Bartocci%2C+Ezio&rft.au=Kov%C3%A1cs%2C+Laura&rft.date=2022-10-31&rft.pub=ACM&rft.eissn=2475-1421&rft.volume=6&rft.issue=OOPSLA2&rft.spage=1497&rft.epage=1525&rft_id=info:doi/10.1145%2F3563341&rft.externalDocID=3563341 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1421&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1421&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1421&client=summon |