Feedback-driven semi-supervised synthesis of program transformations

While editing code, it is common for developers to make multiple related repeated edits that are all instances of a more general program transformation. Since this process can be tedious and error-prone, we study the problem of automatically learning program transformations from past edits, which ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of ACM on programming languages Jg. 4; H. OOPSLA; S. 1 - 30
Hauptverfasser: Gao, Xiang, Barke, Shraddha, Radhakrishna, Arjun, Soares, Gustavo, Gulwani, Sumit, Leung, Alan, Nagappan, Nachiappan, Tiwari, Ashish
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY, USA ACM 13.11.2020
Schlagworte:
ISSN:2475-1421, 2475-1421
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!