Enhancing Static Analysis for Practical Bug Detection: An LLM-Integrated Approach

While static analysis is instrumental in uncovering software bugs, its precision in analyzing large and intricate codebases remains challenging. The emerging prowess of Large Language Models (LLMs) offers a promising avenue to address these complexities. In this paper, we present LLift, a pioneering...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of ACM on programming languages Ročník 8; číslo OOPSLA1; s. 474 - 499
Hlavní autori: Li, Haonan, Hao, Yu, Zhai, Yizhuo, Qian, Zhiyun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY, USA ACM 29.04.2024
Predmet:
ISSN:2475-1421, 2475-1421
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract While static analysis is instrumental in uncovering software bugs, its precision in analyzing large and intricate codebases remains challenging. The emerging prowess of Large Language Models (LLMs) offers a promising avenue to address these complexities. In this paper, we present LLift, a pioneering framework that synergizes static analysis and LLMs, with a spotlight on identifying Use Before Initialization (UBI) bugs within the Linux kernel. Drawing from our insights into variable usage conventions in Linux, we enhance path analysis using post-constraint guidance. This approach, combined with our methodically crafted procedures, empowers LLift to adeptly handle the challenges of bug-specific modeling, extensive codebases, and the unpredictable nature of LLMs. Our real-world evaluations identified four previously undiscovered UBI bugs in the mainstream Linux kernel, which the Linux community has acknowledged. This study reaffirms the potential of marrying static program analysis with LLMs, setting a compelling direction for future research in this area.
AbstractList While static analysis is instrumental in uncovering software bugs, its precision in analyzing large and intricate codebases remains challenging. The emerging prowess of Large Language Models (LLMs) offers a promising avenue to address these complexities. In this paper, we present LLift, a pioneering framework that synergizes static analysis and LLMs, with a spotlight on identifying use-before-initialization (UBI) bugs within the Linux kernel. Drawing from our insights into variable usage conventions in Linux, we enhance path analysis using post-constraint guidance. This approach, combined with our methodically crafted procedures, empowers LLift to adeptly handle the challenges of bug-specific modeling, extensive codebases, and the unpredictable nature of LLMs. Our real-world evaluations identified four previously undiscovered UBI bugs in the mainstream Linux kernel, which the Linux community has acknowledged. This study reaffirms the potential of marrying static analysis with LLMs, setting a compelling direction for future research in this area.
While static analysis is instrumental in uncovering software bugs, its precision in analyzing large and intricate codebases remains challenging. The emerging prowess of Large Language Models (LLMs) offers a promising avenue to address these complexities. In this paper, we present LLift, a pioneering framework that synergizes static analysis and LLMs, with a spotlight on identifying Use Before Initialization (UBI) bugs within the Linux kernel. Drawing from our insights into variable usage conventions in Linux, we enhance path analysis using post-constraint guidance. This approach, combined with our methodically crafted procedures, empowers LLift to adeptly handle the challenges of bug-specific modeling, extensive codebases, and the unpredictable nature of LLMs. Our real-world evaluations identified four previously undiscovered UBI bugs in the mainstream Linux kernel, which the Linux community has acknowledged. This study reaffirms the potential of marrying static program analysis with LLMs, setting a compelling direction for future research in this area.
ArticleNumber 111
Author Qian, Zhiyun
Hao, Yu
Li, Haonan
Zhai, Yizhuo
Author_xml – sequence: 1
  givenname: Haonan
  orcidid: 0000-0003-0357-0888
  surname: Li
  fullname: Li, Haonan
  email: hli333@ucr.edu
  organization: University of California, Riverside, Riverside, USA
– sequence: 2
  givenname: Yu
  orcidid: 0000-0002-3944-3162
  surname: Hao
  fullname: Hao, Yu
  email: yhao016@ucr.edu
  organization: University of California, Riverside, Riverside, USA
– sequence: 3
  givenname: Yizhuo
  orcidid: 0009-0005-8243-3495
  surname: Zhai
  fullname: Zhai, Yizhuo
  email: yzhai003@ucr.edu
  organization: University of California, Riverside, Riverside, USA
– sequence: 4
  givenname: Zhiyun
  orcidid: 0000-0003-1506-2522
  surname: Qian
  fullname: Qian, Zhiyun
  email: zhiyunq@cs.ucr.edu
  organization: University of California, Riverside, Riverside, USA
BookMark eNpt0M1LwzAUAPAgE5xzePeUm6dqkqZN621uUwcVFfVcXtOXrdKlI4mH_fd2bIqIp_f148F7p2RgO4uEnHN2xblMruNU5pnIjshQSJVEXAo--JWfkLH3H4wxnscyi_MheZnbFVjd2CV9DRAaTScW2q1vPDWdo88OdN-Elt5-LukMA_ZlZ296RYviMVrYgEsHAWs62WxcB3p1Ro4NtB7Hhzgi73fzt-lDVDzdL6aTIgKhVIhUkldZWgmspFaxVLxKE9BpjpChTk1qRC1MXaMBDYwnrMKca4WgFEeJDOMRifZ7teu8d2hK3ewu6Gxw0LQlZ-XuJeXhJb2__OM3rlmD2_4jL_YS9PoHfQ-_AAPaaj8
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3601448
crossref_primary_10_1016_j_infsof_2025_107802
crossref_primary_10_1109_TSE_2025_3594673
crossref_primary_10_1145_3728955
crossref_primary_10_1145_3728978
crossref_primary_10_1002_cpe_70203
crossref_primary_10_1145_3728875
crossref_primary_10_1145_3728890
crossref_primary_10_1145_3729482
crossref_primary_10_1007_s10009_025_00780_7
crossref_primary_10_1016_j_dsm_2025_06_005
crossref_primary_10_1145_3735637
crossref_primary_10_1016_j_scico_2025_103387
crossref_primary_10_1109_TIFS_2025_3597221
Cites_doi 10.1145/3319535.3354244
10.1109/SP46215.2023.10179420
10.48550/arXiv.2205.00445
10.1145/3582688
10.5281/zenodo.10780591
10.1145/3464457
10.1145/3520312.3534862
10.1109/ICSE48619.2023.00085
10.1145/3571730
10.48550/arXiv.2302.04761
10.48550/arXiv.2306.01987
10.1017/CBO9780511546990
10.48550/arXiv.2205.12255
10.1145/3368089.3409686
10.5555/3618408.3619552
10.1145/2892208.2892235
10.1145/3597503.3639117
ContentType Journal Article
Copyright Owner/Author
Copyright_xml – notice: Owner/Author
DBID AAYXX
CITATION
DOI 10.1145/3649828
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2475-1421
EndPage 499
ExternalDocumentID 10_1145_3649828
3649828
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1953933, 1652954
  funderid: https:\/\/doi.org\/10.13039\/100000001
GroupedDBID AAKMM
AAYFX
ACM
AEFXT
AEJOY
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
GUFHI
LHSKQ
M~E
OK1
ROL
AAYXX
CITATION
ID FETCH-LOGICAL-a277t-759b86b2eb4c73471b65ac69ea8ec6f6f2d2fddefaca0150be91c7ea771e4e0e3
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001209927600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2475-1421
IngestDate Tue Nov 18 22:32:35 EST 2025
Sat Nov 29 07:54:36 EST 2025
Mon Jul 07 16:40:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue OOPSLA1
Keywords large language model
Static analysis
bug detection
Language English
License This work is licensed under a Creative Commons Attribution International 4.0 License.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a277t-759b86b2eb4c73471b65ac69ea8ec6f6f2d2fddefaca0150be91c7ea771e4e0e3
ORCID 0000-0003-1506-2522
0000-0003-0357-0888
0000-0002-3944-3162
0009-0005-8243-3495
OpenAccessLink https://dl.acm.org/doi/10.1145/3649828
PageCount 26
ParticipantIDs crossref_citationtrail_10_1145_3649828
crossref_primary_10_1145_3649828
acm_primary_3649828
PublicationCentury 2000
PublicationDate 2024-04-29
PublicationDateYYYYMMDD 2024-04-29
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-29
  day: 29
PublicationDecade 2020
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationTitle Proceedings of ACM on programming languages
PublicationTitleAbbrev ACM PACMPL
PublicationYear 2024
Publisher ACM
Publisher_xml – name: ACM
References (bib14) 2023
(bib3) 2023a
(bib51) 2023b
(bib50) 2023a
(bib31) 2023a
(bib32) 2023b
(bib47) 2023
(bib27) 2023
(bib9) 2015
(bib17) 2023
(bib11) 2022
(bib21) 2023
(bib20) 2019
(bib41) 2023
(bib5) 2023b
(bib44) 2017; 30
(bib34) 2023
(bib54) 2023
(bib23) 2022
(bib43) 2023
(bib4) 2021
(bib12) 2023; 55
(bib18) 2024
(bib15) 2023
(bib10) 2007
(bib35) 2023
(bib7) 2023
(bib29) 2022; 54
(bib40) 2024
(bib42) 2022
(bib25) 2023b
(bib52) 2020
(bib22) 2020
(bib24) 2023a
(bib8) 2023
(bib26) 2022
(bib36) 2023
(bib37) 2023; 55
(bib1) 2024
(bib16) 2023
(bib46) 2023
(bib38) 2016
(bib49) 2022
(bib19) 2023
(bib39) 2023
(bib13) 2022
(bib6) 2023
(bib28) 2022
(bib48) 2023
(bib53) 2023
(bib33) 2021
(bib45) 2023
(bib2) 2023
(bib30) 2023
Vaswani Ashish (e_1_2_1_44_1)
e_1_2_1_20_1
e_1_2_1_24_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_26_1
e_1_2_1_47_1
Ahmed Toufique (e_1_2_1_1_1)
Chen Mark (e_1_2_1_4_1) 2021
e_1_2_1_31_1
e_1_2_1_54_1
e_1_2_1_8_1
Huang Jiaxin (e_1_2_1_11_1) 2022
e_1_2_1_6_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_50_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_52_1
e_1_2_1_2_1
e_1_2_1_16_1
e_1_2_1_39_1
Tian Haoye (e_1_2_1_41_1) 2023
Shinn Noah (e_1_2_1_36_1) 2023
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_18_1
Gosain Anjana (e_1_2_1_9_1) 2015
e_1_2_1_42_1
Yao Shunyu (e_1_2_1_51_1) 2023
e_1_2_1_40_1
Wei Jason (e_1_2_1_46_1) 2023
e_1_2_1_23_1
e_1_2_1_21_1
e_1_2_1_27_1
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_29_1
e_1_2_1_7_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_32_1
e_1_2_1_53_1
e_1_2_1_17_1
e_1_2_1_38_1
Wang Guanzhi (e_1_2_1_45_1) 2023
e_1_2_1_15_1
e_1_2_1_19_1
References_xml – year: 2023
  ident: bib43
  publication-title: Llama 2: Open Foundation and Fine-Tuned Chat Models
– year: 2023
  ident: bib6
  article-title: ChatGPT Is a Blurry JPEG of the Web
  publication-title: The New Yorker
– year: 2023
  ident: bib14
  publication-title: Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities
– year: 2019
  ident: bib20
  publication-title: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security
  doi: 10.1145/3319535.3354244
– year: 2023
  ident: bib48
  publication-title: Keep the Conversation Going: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT
– year: 2023
  ident: bib30
  publication-title: 2023 IEEE Symposium on Security and Privacy (S&P)
  doi: 10.1109/SP46215.2023.10179420
– year: 2023
  ident: bib39
  publication-title: Automatic Code Summarization via ChatGPT: How Far Are We?
– year: 2022
  ident: bib13
  publication-title: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning
  doi: 10.48550/arXiv.2205.00445
– year: 2023
  ident: bib2
  publication-title: Claude 2
– year: 2024
  ident: bib40
  publication-title: 2024 IEEE/ACM 45th International Conference on Software Engineering (ICSE)
– year: 2023
  ident: bib45
  publication-title: Voyager: An Open-Ended Embodied Agent with Large Language Models
– volume: 55
  start-page: 271:1
  issue: 13s
  year: 2023
  end-page: 271:40
  ident: bib37
  article-title: A Comprehensive Survey of Fewshot Learning: Evolution, Applications, Challenges, and Opportunities
  publication-title: Comput. Surveys
  doi: 10.1145/3582688
– year: 2023
  ident: bib19
  publication-title: Chain of Hindsight Aligns Language Models with Feedback
– year: 2023
  ident: bib15
  publication-title: Bard’s latest update: more features, languages and countries
– year: 2023b
  ident: bib5
  publication-title: Teaching Large Language Models to Self-Debug
– volume: 30
  year: 2017
  ident: bib44
  publication-title: Advances in Neural Information Processing Systems
– year: 2024
  ident: bib18
  publication-title: Enhancing Static Analysis for Practical Bug Detection: An LLMIntegrated Approach (Artifact)
  doi: 10.5281/zenodo.10780591
– year: 2023
  ident: bib7
  publication-title: GitHub Copilot documentation
– year: 2021
  ident: bib33
  publication-title: What is Temperature in NLP?
– year: 2023a
  ident: bib3
  publication-title: When do you need Chain-of-Thought Prompting for ChatGPT?
– year: 2023b
  ident: bib32
  publication-title: Symmetry-Preserving Program Representations for Learning Code Semantics
– year: 2023
  ident: bib53
  publication-title: A Survey of Large Language Models
– year: 2023b
  ident: bib51
  article-title: ReAct: Synergizing Reasoning and Acting in Language Models
  publication-title: International Conference on Learning Representations (ICLR)
– year: 2022
  ident: bib23
  publication-title: Introducing ChatGPT
– year: 2024
  ident: bib1
  publication-title: 2024 IEEE/ACM 45th International Conference on Software Engineering (ICSE)
– volume: 54
  start-page: 149:1
  issue: 7
  year: 2022
  end-page: 149:37
  ident: bib29
  article-title: A Survey of Parametric Static Analysis
  publication-title: ACM Comput. Surv
  doi: 10.1145/3464457
– year: 2023
  ident: bib21
  publication-title: The Scope of ChatGPT in Software Engineering: A Thorough Investigation
– year: 2023b
  ident: bib25
  publication-title: GPT-4 Technical Report
– year: 2023
  ident: bib35
  publication-title: Best practices for prompt engineering with OpenAI API | OpenAI Help Center
– year: 2023
  ident: bib16
  publication-title: Announcing LangSmith, a unified platform for debugging, testing, evaluating, and monitoring your LLM applications
– year: 2022
  ident: bib26
  publication-title: Training language models to follow instructions with human feedback
– year: 2020
  ident: bib52
  publication-title: Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2020)
– year: 2023a
  ident: bib50
  publication-title: Tree of Thoughts: Deliberate Problem Solving with Large Language Models
– start-page: 581
  year: 2015
  end-page: 591
  ident: bib9
  publication-title: Intelligent Computing and Applications (Advances in Intelligent Systems and Computing)
– year: 2022
  ident: bib11
  publication-title: Large Language Models Can Self-Improve
– year: 2023
  ident: bib46
  publication-title: Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
– year: 2021
  ident: bib4
  article-title: Evaluating large language models trained on code
  publication-title: arXiv preprint arXiv:2107.03374
– year: 2020
  ident: bib22
  publication-title: nginx
– year: 2023
  ident: bib47
  publication-title: LLM-powered Autonomous Agents
– start-page: 1
  year: 2022
  end-page: 10
  ident: bib49
  publication-title: Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming
  doi: 10.1145/3520312.3534862
– year: 2023
  ident: bib54
  publication-title: Why Does ChatGPT Fall Short in Providing Truthful Answers?
– year: 2023
  ident: bib17
  publication-title: CODAMOSA: Escaping Coverage Plateaus in Test Generation with Pre-trained Large Language Models
  doi: 10.1109/ICSE48619.2023.00085
– volume: 55
  start-page: 1
  issue: 12
  year: 2023
  end-page: 38
  ident: bib12
  article-title: Survey of Hallucination in Natural Language Generation
  publication-title: Comput. Surveys
  doi: 10.1145/3571730
– year: 2023a
  ident: bib24
  publication-title: Function calling and other API updates
– start-page: 265
  year: 2016
  end-page: 266
  ident: bib38
  publication-title: Proceedings of the 25th international conference on compiler construction
– year: 2023
  ident: bib27
  publication-title: Understanding the Capabilities of Large Language Models for Automated Planning
– year: 2023
  ident: bib36
  publication-title: Reflexion: Language Agents with Verbal Reinforcement Learning
– year: 2022
  ident: bib42
  publication-title: tianocore/edk2
– year: 2023
  ident: bib34
  publication-title: Toolformer: Language Models Can Teach Themselves to Use Tools
  doi: 10.48550/arXiv.2302.04761
– year: 2023
  ident: bib41
  publication-title: Is ChatGPT the Ultimate Programming Assistant – How far is it?
– year: 2023
  ident: bib8
  publication-title: Prompting Is All Your Need: Automated Android Bug Replay with Large Language Models
  doi: 10.48550/arXiv.2306.01987
– year: 2023a
  ident: bib31
  publication-title: Proceedings of the 40th International Conference on Machine Learning
– year: 2007
  ident: bib10
  publication-title: Path-Oriented Program Analysis
  doi: 10.1017/CBO9780511546990
– year: 2022
  ident: bib28
  publication-title: TALM: Tool Augmented Language Models
  doi: 10.48550/arXiv.2205.12255
– ident: e_1_2_1_35_1
– ident: e_1_2_1_21_1
– ident: e_1_2_1_27_1
– ident: e_1_2_1_43_1
– ident: e_1_2_1_19_1
– ident: e_1_2_1_26_1
– volume-title: 2024 IEEE/ACM 45th International Conference on Software Engineering (ICSE).
  ident: e_1_2_1_1_1
– volume-title: Chi, Quoc Le, and Denny Zhou
  year: 2023
  ident: e_1_2_1_46_1
– volume-title: Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, and Greg Brockman.
  year: 2021
  ident: e_1_2_1_4_1
– volume-title: Advances in Neural Information Processing Systems. 30, Curran Associates
  ident: e_1_2_1_44_1
– ident: e_1_2_1_53_1
– volume-title: Reflexion: Language Agents with Verbal Reinforcement Learning. arxiv:2303.11366 arXiv:2303.11366 [cs]
  year: 2023
  ident: e_1_2_1_36_1
– ident: e_1_2_1_42_1
– ident: e_1_2_1_52_1
  doi: 10.1145/3368089.3409686
– ident: e_1_2_1_50_1
– volume-title: Xunzhu Tang, Shing-Chi Cheung, Jacques Klein, and Tegawendé F. Bissyandé.
  year: 2023
  ident: e_1_2_1_41_1
– ident: e_1_2_1_17_1
  doi: 10.1109/ICSE48619.2023.00085
– ident: e_1_2_1_12_1
  doi: 10.1145/3571730
– ident: e_1_2_1_48_1
– ident: e_1_2_1_2_1
– ident: e_1_2_1_5_1
– volume-title: ReAct: Synergizing Reasoning and Acting in Language Models. International Conference on Learning Representations (ICLR).
  year: 2023
  ident: e_1_2_1_51_1
– ident: e_1_2_1_32_1
– ident: e_1_2_1_7_1
– ident: e_1_2_1_8_1
  doi: 10.48550/arXiv.2306.01987
– ident: e_1_2_1_31_1
  doi: 10.5555/3618408.3619552
– ident: e_1_2_1_24_1
– volume-title: Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
  year: 2022
  ident: e_1_2_1_11_1
– ident: e_1_2_1_16_1
– ident: e_1_2_1_28_1
  doi: 10.48550/arXiv.2205.12255
– ident: e_1_2_1_23_1
– ident: e_1_2_1_18_1
  doi: 10.5281/zenodo.10780591
– ident: e_1_2_1_49_1
  doi: 10.1145/3520312.3534862
– ident: e_1_2_1_34_1
  doi: 10.48550/arXiv.2302.04761
– ident: e_1_2_1_54_1
– ident: e_1_2_1_38_1
  doi: 10.1145/2892208.2892235
– ident: e_1_2_1_10_1
  doi: 10.1017/CBO9780511546990
– ident: e_1_2_1_13_1
  doi: 10.48550/arXiv.2205.00445
– ident: e_1_2_1_15_1
– ident: e_1_2_1_14_1
– ident: e_1_2_1_37_1
  doi: 10.1145/3582688
– volume-title: Voyager: An Open-Ended Embodied Agent with Large Language Models. arxiv:2305.16291 arXiv:2305.16291 [cs]
  year: 2023
  ident: e_1_2_1_45_1
– ident: e_1_2_1_25_1
– ident: e_1_2_1_40_1
  doi: 10.1145/3597503.3639117
– ident: e_1_2_1_6_1
– volume-title: Static Analysis: A Survey of Techniques and Tools
  year: 2015
  ident: e_1_2_1_9_1
– ident: e_1_2_1_3_1
– ident: e_1_2_1_22_1
– ident: e_1_2_1_30_1
  doi: 10.1109/SP46215.2023.10179420
– ident: e_1_2_1_47_1
– ident: e_1_2_1_33_1
– ident: e_1_2_1_20_1
  doi: 10.1145/3319535.3354244
– ident: e_1_2_1_39_1
– ident: e_1_2_1_29_1
  doi: 10.1145/3464457
SSID ssj0001934839
Score 2.5518775
Snippet While static analysis is instrumental in uncovering software bugs, its precision in analyzing large and intricate codebases remains challenging. The emerging...
SourceID crossref
acm
SourceType Enrichment Source
Index Database
Publisher
StartPage 474
SubjectTerms Automated static analysis
Computing methodologies
Natural language processing
Security and privacy
Software and its engineering
Systems security
SubjectTermsDisplay Computing methodologies -- Natural language processing
Security and privacy -- Systems security
Software and its engineering -- Automated static analysis
Title Enhancing Static Analysis for Practical Bug Detection: An LLM-Integrated Approach
URI https://dl.acm.org/doi/10.1145/3649828
Volume 8
WOSCitedRecordID wos001209927600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2475-1421
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001934839
  issn: 2475-1421
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELagcODCo4AoL_mAuFl0HT9ibktVBNJuu4gitVxWjuN0V6Ju1W5Q4cBvZ_yI1wUOcOASRcnIUfxZ4y-TmW8QeqGpFwkTmjDNGsJUq4kWrSEVF9JK0fK6bUKzCbm3Vx8eqllKCboI7QSkc_XlpTr7r1DDNQDbl87-A9x5ULgA5wA6HAF2OP4V8Ltu4TU0gtB2kGPNuiM-ozDqE3lg3vTH4G1WIRXLpfjgZDIl7wcBidZT1FBwVTLYWd7xQhLIeGfq_zekNK8T_9ghBJrZ-iR2xtZA-t3a44UY7VFfRK6D2dHy-6I_zfHYZQzQfl4sv_WuDFHQkNlCVbGoUtp7cGuUSU5GLNZFDz64Lpba_v7s42Q8Krwqi4180gbNYkel330_8zIZlWCqTvXmV4W0053r6AaVXPn0v-mPIh6nKgZkMdZV-7FeJXtPW8xJQVsK_nFwF91OHw54HAG_h65Zt4nuDE05cPLR99GHjD-O-OMBfwz444w_Bvxxxv81WOGr6OMB_Qfo09vdg513JPXNIJpKuSLwdk0tGmobZmQF7KMRXBuhrK6tEZ3oaEs72NY6bbQPeDVWjYy0WsqRZXbbVg_Rhjt19hHCHeO0M7WyBqi2kLQxVcf0NteSey1BvYU2YXLmZ1EZZZ6mbAu9HCZrbpLUvO948mUey-D52hBnw2GMX0we__EJT9Ct9UJ7ijZW5719hm6ar6vlxfnzgOxPFDtp9g
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Static+Analysis+for+Practical+Bug+Detection%3A+An+LLM-Integrated+Approach&rft.jtitle=Proceedings+of+ACM+on+programming+languages&rft.au=Li%2C+Haonan&rft.au=Hao%2C+Yu&rft.au=Zhai%2C+Yizhuo&rft.au=Qian%2C+Zhiyun&rft.date=2024-04-29&rft.pub=ACM&rft.eissn=2475-1421&rft.volume=8&rft.issue=OOPSLA1&rft.spage=474&rft.epage=499&rft_id=info:doi/10.1145%2F3649828&rft.externalDocID=3649828
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1421&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1421&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1421&client=summon