Fast Computation Flow Restoration with Path-Based Two-Stage Traffic Engineering

The emerging edge networks are cloud-native. Flows with computation needs are processed in-flight by compute nodes inside the network. Routing with In-Network Processing (RINP) not only has to maintain network-wide load balance on communication and computation elements, but also has to quickly resto...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE/ACM Symposium on Edge Computing (Online) s. 215 - 227
Hlavní autoři: Li, Xiaotian, Liu, Yong
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: ACM 06.12.2023
Témata:
ISSN:2837-4827
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The emerging edge networks are cloud-native. Flows with computation needs are processed in-flight by compute nodes inside the network. Routing with In-Network Processing (RINP) not only has to maintain network-wide load balance on communication and computation elements, but also has to quickly restore flows upon various types of failures. In this paper, we propose a novel path-based two-stage traffic engineering scheme to trade-off between routing model complexity, network performance in the normal stage, and restoration efficiency upon failures. For the normal stage, our model jointly optimizes computation demand allocation and traffic flow routing. We further speed-up RINP calculation by controlling the path budget and decoupling computation allocation and traffic routing. For the restoration stage, we develop a fast restoration scheme that only re-routes the flows traversing the failed elements to achieve close-to-optimal network delay performance while minimizing the fraction of unrestored flows. Evaluation results on real network instances demonstrate that in the normal stage, our scheme achieves near-optimal performance with up to 50-100x speedup compared to link-based routing models. In the restoration stage, our scheme can restore most of the affected traffic with up to 10x speedup compared to globally rerouting all the flows.
AbstractList The emerging edge networks are cloud-native. Flows with computation needs are processed in-flight by compute nodes inside the network. Routing with In-Network Processing (RINP) not only has to maintain network-wide load balance on communication and computation elements, but also has to quickly restore flows upon various types of failures. In this paper, we propose a novel path-based two-stage traffic engineering scheme to trade-off between routing model complexity, network performance in the normal stage, and restoration efficiency upon failures. For the normal stage, our model jointly optimizes computation demand allocation and traffic flow routing. We further speed-up RINP calculation by controlling the path budget and decoupling computation allocation and traffic routing. For the restoration stage, we develop a fast restoration scheme that only re-routes the flows traversing the failed elements to achieve close-to-optimal network delay performance while minimizing the fraction of unrestored flows. Evaluation results on real network instances demonstrate that in the normal stage, our scheme achieves near-optimal performance with up to 50-100x speedup compared to link-based routing models. In the restoration stage, our scheme can restore most of the affected traffic with up to 10x speedup compared to globally rerouting all the flows.
Author Li, Xiaotian
Liu, Yong
Author_xml – sequence: 1
  givenname: Xiaotian
  surname: Li
  fullname: Li, Xiaotian
  email: xl3399@nyu.edu
  organization: New York University,Brooklyn,New York,USA
– sequence: 2
  givenname: Yong
  surname: Liu
  fullname: Liu, Yong
  email: yongliu@nyu.edu
  organization: New York University,Brooklyn,New York,USA
BookMark eNotjM1Kw0AURkdRsNau3biYF0idOz93kqWWVoVCReu63EnutANtUpKR4ttb0NUH5xy-W3HVdi0LcQ9qCmDdo3Gl8VZNDWpEcBdiUvmqtEp5BdqUl2Kkz0FhS-1vxGQYUlAObQUVwkisFjRkOesOx-9MOXWtXOy7k_zgIXf9HzilvJPvlHfFMw3cyPWpKz4zbVmue4ox1XLeblPL3Kd2eyeuI-0HnvzvWHwt5uvZa7FcvbzNnpYFaY-5CIxeEepg2UPjGWITubTR6uAw1hFjOLsIJgQgRU0AQEPOWayJsa7MWDz8_SZm3hz7dKD-ZwPKQmXAmF-cClH0
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/3583740.3626615
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798400701238
EISSN 2837-4827
EndPage 227
ExternalDocumentID 10419313
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-a276t-be670a62b4e71d7e1fdfe84f42b56fcf6fb2b4f13bb1a0adb1163a5546cae6c93
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001164050000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:13:47 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a276t-be670a62b4e71d7e1fdfe84f42b56fcf6fb2b4f13bb1a0adb1163a5546cae6c93
PageCount 13
ParticipantIDs ieee_primary_10419313
PublicationCentury 2000
PublicationDate 2023-Dec.-6
PublicationDateYYYYMMDD 2023-12-06
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec.-6
  day: 06
PublicationDecade 2020
PublicationTitle IEEE/ACM Symposium on Edge Computing (Online)
PublicationTitleAbbrev SEC
PublicationYear 2023
Publisher ACM
Publisher_xml – name: ACM
SSID ssib056491961
ssj0003189186
Score 1.9033841
Snippet The emerging edge networks are cloud-native. Flows with computation needs are processed in-flight by compute nodes inside the network. Routing with In-Network...
SourceID ieee
SourceType Publisher
StartPage 215
SubjectTerms Complexity theory
Computational modeling
Edge computing
In-network Processing
Load modeling
Resilience
Resource management
Restoration
Routing
Traffic Engineering
Title Fast Computation Flow Restoration with Path-Based Two-Stage Traffic Engineering
URI https://ieeexplore.ieee.org/document/10419313
WOSCitedRecordID wos001164050000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYmACRBHf8sAaiJOzHa8gIgZUKlRQt8ofZ4SEGtSm9O9jO6XAwMAWOUt0uei9u9y7R8hFpQU4xXxmMZSrIAvIFJQiiypI7bgv8jSb83wvB4NqPFbDlVg9aWEQMQ2f4WW8TP_yXWMXsVUWvnAIfCN61G5KKTux1lfycAEqZBNbN1hCsipWidU6Hwb8quShGoNQpoqISvyXn0qCk3rnnw-yS_rfwjw6XEPOHtnA6T55qPW8pZ09Q4ozrd-aJX1MnjHdQey20mEge9l1QC1HR8smCzTzBWnAqrhEgv7YS9gnT_Xt6OYuW_kkZLqQos0MCplrURhAyZxE5p3HCjwUhgtvvfAm3POsNIbpXDvDAgnTcTzNahRWlQekN22meEgogCu1Q6a4tYA5ryrPC3CBhFljFHNHpB-jMXnvVmFMvgJx_Mf5CdmO_uxp_kOckl47W-AZ2bIf7et8dp5e4CfJMZtu
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQQYIJEEV844HVECdnJ15BREWUUqGCulX-REioQW1K_z620xYYGNgiZ4kuF713l3v3ELooJAcjqCPa-nIV8hSIgIyToIKUhrk0ibM5L9281yuGQ9FfiNWjFsZaG4fP7GW4jP_yTaVnoVXmv3DwfCN41K4zgJQ2cq1l-jAOwucTXbVYfLoKWvDFQh8K7Cpjvh4DX6jygEvsl6NKBJRy-5-PsoPa39I83F-Bzi5as-M99FjKaY0bg4YYaVy-V3P8FF1jmoPQb8V9T_fItcctgwfzinii-WqxR6uwRgL_2EzYRs_l7eCmQxZOCUSmOa-JsjxPJE8V2Jya3FJnnC3AQaoYd9pxp_w9RzOlqEykUdTTMBkG1LS0XItsH7XG1dgeIAxgMmksFUxrsAkrCsdSMJ6GaaUENYeoHaIx-miWYYyWgTj64_wcbXYGD91R9653f4y2glt7nAbhJ6hVT2b2FG3oz_ptOjmLL_MLDw2etQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FACM+Symposium+on+Edge+Computing+%28Online%29&rft.atitle=Fast+Computation+Flow+Restoration+with+Path-Based+Two-Stage+Traffic+Engineering&rft.au=Li%2C+Xiaotian&rft.au=Liu%2C+Yong&rft.date=2023-12-06&rft.pub=ACM&rft.eissn=2837-4827&rft.spage=215&rft.epage=227&rft_id=info:doi/10.1145%2F3583740.3626615&rft.externalDocID=10419313